Concurrent CP/M-86™

Operating System

Programmer’s
Reference Guide

—

10
DIGITAL
RESEARCH"

Concurrent CP/M-86"

Operating System

Programmer’s
Reference Guide

COPYRIGHT

Copyright © 1983 by Digital Research. All rights reserved. No part of this publica-
tion may be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the
prior written permission of Digital Research, Post Office Box 579, Pacific Grove,
California, 93950.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness
for any particular purpose. Further, Digital Research reserves the right to revise this
publication and to make changes from time to time in the content hereof without
obligation of Digital Research to notify any person of such revision or changes.

TRADEMARKS

CP/M and CP/M-86 are registered trademarks of Digital Research. ASM-86, Concur-
rent CP/M-86, DDT, DDT-86, MP/M, and MP/M-86 are trademarks of Digital
Research. Intel and MCS are registered trademarks of Intel Corporation. ISIS-II is a
trademark of Intel Corporation. IBM is a registered trademark of International Busi-
ness Machines.

The Concurrent CP/IM-86 Operating System Programmer’s Reference Guide was printed
in the United States of America.

First Edition: June 1983

Foreword

Concurrent CP/M-86™ is an operating system for 8086- or 8088-based microcom-
puter systems. It supports multiple CP/M® programming environments each imple-
mented upon a virtual console. A different task runs concurrently in each environment.

This manual describes the invariant programming interface to Concurrent
CP/M-86. It supports the applications programmer who must create applications
programs that run in the CP/M-86® environment.

Section 1 offers an overview of the entire operating system.

Section 2 describes the structure of the Concurrent CP/M-86 file system.

Section 3 explains the format, structure, and uses of transient commands in the
Concurrent CP/M-86 environment.

Section 4 explains the creation of transient command files in the Concurrent
CP/M-86 environment.

Section 5 documents the structure and creation of resident system processes or
resident command files permanently installed in the Concurrent CP/M-86 environment.

Section 6 describes all the Concurrent CP/M-86 system calls.
Concurrent CP/M-86 is supported and documented through four manuals:
B The Concurrent CP/IM-86 Operating System User’s Guide (hereafter cited as
Concurrent CPIM-86 User’s Guide) documents the user’s interface to Con-

current CP/M-86, explaining the various features used to execute applications
programs and Digital Research utility programs.

i

@ The Concurrent CP/M-86 Operating System Programmer’s Reference Guide
(hereafter cited as Concurrent CP/M-86 Programmer’s Reference Guide) doc-
uments the applications programmer’s interface to Concurrent CP/M-86,
explaining the internal file structure and system entry points, information that
is essential for creating applications programs that run in the Concurrent
CP/M-86 environment.

® The Concurrent CP/M-86 QOperating System Programmer’s Utilities Guide
(hereafter cited as Programmer’s Utilities Guide) is the Digital Research utility
programs that programmers use to write, debug, and verify applications pro-
grams written for the Concurrent CP/M-86 environment.

® The Concurrent CP/M-86 Operating System System Guide (hereafter cited as
Concurrent CP/M-86 System Guide) documents the internal, hardware-
dependent structures of Concurrent CP/M-86.

iv

o

Table of Contents

1 Concurrent CP/M-86 System Overview

1.1 IntrodUcCtion ...ttt et e et aiara e n e neeanas
1.2 Supervisor (SUP) ...ttt i i e e e e e
1.3 Real-time Monitor (RTM) ... ittt
1.3.1 Process Dispatchingcc.viiiriin i i vnns
1.3.2 Queue Managementcoiuvenerniranennaaaaaneos B
1.3.3 System Timing Function
1.4 Memory Module (MEM) ittt iiiin i
1.5 Basic Disk Operating System (BDOS)t
1.6 Character /O Module (CIO) . ..iiiiiirr it
1.7 Virtual Console Screen Managementc v riiinernenenns
1.8 Extended Input/Output System (XIOS) ot
1.9 Terminal Message Processes (TMP)
1.10 Transient Programs ittt iirvnivieraneneennanaans
1.11 System Call Calling Conventionsc.coveirurieninenenns
1.12 SYSTAT: System Status ... oo v iir i inrorenanennanssons

2 The Concurrent CP/M-86 File System

2.1 File System OVEIVIEW .. .vvtiin ittt iiinaneniennnanns
2.1.1 File-access System Callsccoviiiiiiiiiiiininns
2.1.2 Drive-related System Callso iiiiiiiiiiin.

2.2 File Naming Conventionsc.eueerereeeonsnnrenesnaneos

2.3 Disk Drive and File Organizationcovieiinrninernarens

2.4 File Control Block Definitioncccivireeiniininrnennes
2.4.1 FCB Initialization and Usageccvvrieverernnnnnns
2.4.2 File Attributesvvriiinii it it e
2.4.3 Interface Attributescovvrvenne i rernnreeananen

2.5 User Number Conventionsvvrireerrnicnenennnanns

2.6 Directory Labels and XFCBs .. .c.vviininiininnninnrenennn

2.7 File Passwordsvuuneineinernnrnnnnerasonennreneonanns

2.8 File Date and Time Stamps: SFCBsccviiiiiniiiinenenrnnn

2.9 FileOpen Modesciiiiiiiiiriin i iiinaanrneans

2,10 File SEcUrity v ivivvie e ieieieinearceenaestaroanaononns

2.11 Extended File Lockingcooveiuiniiriiiriiininnannnes.

2.12 Compatibility Actributesccviiriiiiiiiiniiiiiii e,

2.13 Multisector I/O v v iieir it ittt et

Table of Contents (continued)

2.14 Concurrent File ACCessvviiinen i iiiarneiirirerneansans 2-38
2.15 File Byte COUNtS .. vvvvvnins it ieeeere e nenenansenesesannns 2-41
2.16 Record Blocking and Deblockingcovuieiiiiiatn 2-42
2.17 Reset, Access, and Free Drivevviiiniiniiiinnennennnns 2-43
2.18 BDOSErrorHandlingccciiiiiiiiniiiiinvnrnnnnns 2-47

Transient Commands

3.1 Transient Process Load and Exitccviiiiniiiiiinanansns 3-1
3.2 Command File Formatvviiiiiinii it inaanenansnos 3-2
3.3 Base Page Initializationcccovrenieninieneenennnennunes 3-4
3.4 Parent/Child Relationshipsttt irnnnnnrunn 3-7

Command File Generation

4.1 Transient Execution Modelscoiviiiiiriiinnriennnon, 4-1
4.1.1 The 8080 Memory Modelcoiiiiiiiiiiiiinevnn 4-2
4.1.2 The Small Memory Modelciiiiiiiviiainnnnnn 4-4
4.1.3 The Compact Memory Modelc..ccvvnennt, 4-6

4.2 GENCMD i it ii ittt ittt tte s sasnnsneanansannens 4-8

4.3 Intel Hexadecimal File Formatc.ociriinvuennenennas 4-11

Resident System Process Generation

5.1 Introduction to0 RSPs\ ittt it i 5-1
5.2 RSP Memory Models ... ittt it iecn e 5-1
5.2.1 8080 Model RSP ..ottt it it 5-2
5.22 Small Model RSP ..ottt it i e e 5-2
5.3 Multiple Copies of RSPst iiiiii it iinnannes 5-3
5.3.1 8080 Model ...t i e e e 5-4
5.3.2 Small Model e 5-4
5.3.3 Small Model with Shared Codecciviiiiinenns 5-4
5.4 Creating and Initializingan RSP i iiiiiiiiiinnenn 5-4

oO®»

Table of Contents (continued)

541 The RSP Headerc.coiiiiiuinrininiaininrnnenn. 5-8
5.4.2 The RSP Process Descriptoroueviieinnennnernenan. 5-8
54.3 The RSP User Data Areac..veierninrnecnecnnnnenns 5-9
544 The RSP Stackoviriiiiiiii it iiiiennane 5-10
5.4.5 The RSP Command Queueovvivennnnrennnn. 5-10
5.4.6 Multiple Processes withinan RSP 5-11
5.5 Developing and Debuggingan RSPiiiiininnn.. 5-12
System Calls
6.1 System Call Summaryiiiiiiiiiii it i, 6-14
6.2 Concurrent CP/M-86 System Callscovivinin... 6-21
6.2.1 Console /O System Callsc.ccciiiinnn. 6-22
6.2.2 Device System Calls i, 6-42
6.2.3 Disk Drive System Calls iiriieaionn. 6-45
6.2.4 File-access System Calls i iiiiiian.. 6-66
6.2.5 List Device /O System Calls, 6-129
6.2.6 Memory System Callso i, 6-135
6.2.7 Process/Program System Calls 6-146
6.2.8 QueueSystem Callsciiiiiiiiiiiniiiiinnnn 6-171
6.2.9 System Information System Calls 6-182
Appendixes
L [T LY. G A-1
ASCII and Hexadecimal Conversionsc.covvevunenniersanenons B-1
Error Codes .. .oiviveinriniiiiin e rneveosoontnsossnneneonnnnas C-1
ECHO.ABG Listingc.viiiiienennnnensnsrnecnenonessosennses D-1

1-1.

2-10.
2-11.
2-12.
2-13.
2-14.
2-15.

3-2.
4-1.
4-2,
6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
6-7.

6-9.

6-10.
6-11.
6-12.
6-13.
6-14.

Table of Contents (continued)

Tables

Registers Used by System Calls ccciieiiiiaan.. 1-15
File System Calls i i i i e eeanes 2-4
Valid Filename Delimitersttt ininnnnes 2-6
Filetype Conventionsevieeenurneenueneennennenenanens 2-8
Drive Capacity . .vvviitn it ieten e eaar e 2-9
FCB Field Definitionsttt i ittt eieaeneeanns 2-12
File Attribute Definitionsoutirnr it terenenenennenens 2-16
BDOS Interface Attributes FS’ and F6', 2-17
Directory Label Field Definitionso, 2-20
XFCB Field Definitionsccouiiitiienenneieninnnnneannes 2-22
Password Protection Modes ...t 2-23
Compatibility Attribute Definitionsccvvitvnnrevennnens 2-35
BDOS Physical Errorsvviirviiii ittt irinnainenenn. 2-49
BDOS Extended Errorsivitintnii it ineeaneannenns 2-50
BDOS Error Codes . ..oiviiini it eieiiiinie et nnnanen 2-52
BDOS Physical and Extended Errorscooiuitiiininenennns 2-55
Group DescriPtors . v ou vttt it ittt et i rannarenneenans 3-3
Group Descriptor Fields i i 3-4
Concurrent CP/M-86 Memory Modelsot 4-1
Intel Hex Field Definitionsvvvviiini i iniveiiennaneannas 4-13
System Call Categoriesviurenn v eeenenurernerernennnnns 6-2
Concurrent CP/M-86 System Calls it iiiiien, 6-4
System Call Summaryc..co ittt 6-14
Data Structures Indexot e e 6-18
CX Error Code Reports . ..cvvvtnvrvieiieiieaaeeeaatannnns 6-20
ACB Field Definitionsvvitntnien ittt e ennatnenans 6-23
C_RAWIO Calling Valueso it iiniinniinnn.s 6-32
Console Buffer Field Definitionscouiiterenerennreen. 6-35
C_READSTR Line-editing Characterscccoviiirnrnnn. 6-35
DPB Field Definitionsvutiitnnt it inenerenennennnes 6-50
PFCB Field Definitionsviiten e ienreneenerenennseanes 6-92
FCB Initialization00t eria s 6-94
MCB Field Definitionsovvieneeneneaneenaennenanenns 6-136
MPB Field Definitionsvvvuurene v enenenneneneronnnns 6-137

viii

Table of Contents (continued)

Tables

6-15. APB Field Definitionsviieiinirnrneneceeaeneneanns 6-147
6-16. Command Line Buffer Field Definitions 6-150
G-17. PD Field Definitionsouuviniteiineeneennenennnnenanenens 6-155
6-18. UDA Field Definitionsiiiiiiininiiinienrrneanennas 6-160
6-19. CPB Field Definitionsccieiiieienrirnenernoannnnns 6-168
6-20. QPB Ficld Definitionsc.ouiiertnenriiininenerennieannns 6-171
6-21. QD Ficld Definitionsuunenninien e inieannrnesanennns 6-177
6-22. SYSDAT TableDataFieldsc.cviivivineiinenennn, 6-189
6-23. TOD Field Definitionsiuieiienenrenenenereroenenas 6-195
B-1. ASCIISymbolsoeiii ittt i ittt et i iananan B-1
B-2. ASCII Conversion Tablecciiiiiiieiieiiiiiiiinneennnn B-2
C-1. Concurrent CP/M-86 Error Codescovviiviiiiiiniinnen. C-1
Figures
1-1. Concurrent CP/M-86 Virtual/Physical Environments 1-1
1-2. Concurrent CP/M-86 Functional Modules 1-3
2-1. FCB-FileControl Blockcciiiiiiiiiiiiiriiiirinennn, 2-11
2-2. Directory Label Formatc.i.iiiiiiiinernrnnnnnenns 2-19
2-3. XFCB - Extended File Control Block ..., 2-21
2-4. Dircctory Record with SFCB i it 2-25
2-5. SFCBSubfieldsc.ciiiiiiiii ittt 2-26
2-6. Disk System Resetviiiiirereie e eaninienenns 2-45
3-1. CMD File Header Formatvvunvrnnnnnneeneinaneananns 3-2
3-2. Group Descriptor Format it 3-3
3-3. Concurrent CP/M-86 Basc Page Valuesot 3-5
4-1. Concurrent CP/M-86 8080 Mcmory Model 4-3
4-2. Concurrent CP/M-86 Small Memory Model 4-5
4-3. Concurrent CP/M-86 Compact Memory Model 4-6
4-4. Intel Hexadecimal File Formatsoovieeirenrunvnnennans 4-12
5-1. 8080 and Small RSP Modelscviiiiiiiiiiiiiiine 5-2
5-2. RSP HeaderFormatc.iuiiitininiineninenennananns 5-3
5-3. RSP Command Queue Messagec.cuvuenvnnnneneasusnnen 5-5

ix

5-4.
6-1.
6-2,

6-4.
6-5.

6-7.
6-8.
6-9.

6-10.
6-11.
6-12.
6-13.
6-14.
6-15.

Table of Contents (continued)

Figures
RSP Data Segmentottt ittt 5-7
ACB - Assign Control Block oottt i, 6-22
Console Buffer Formatottt iieie e 6-34
Drive, R/O, or Login Vector SIructureveveninrenneensonn 6-45
DPB - Disk Parameter Blockcoiiriiiiiiiiiin, 6-50
Disk Free Space Field Formatciiiiiiniininnnn.. 6-66
PFCB - Parse Filename Control Block 6-91
MCB - Memory Control Blockc..ccovviiiiinnn... 6-135
MPB - Memory Parameter Block, 6-136
MFPB - M_FREE ParameterBlock 6-139
APB - Abort Parameter Block, 6-146
CLI Command Line Bufferc.c0iiiniiiiininnnnnnn. 6-150
PD - Process Descriptor .. .ovvvuivntnn ettt ietennrenrnnnnnnas 6-154
UDA-User Data Areavvtiritinii it tnannneeennns 6-159
CPB - Call Parameter Blockcovviiiiiiiininnnn.... 6-167
QPB - Queue Parameter Block 6-171

Section 1
Concurrent CP/M-86 System Overview

1.1 Introduction

Concurrent CP/M-86 is a single-user, multitasking operating system that lets you
run multiple programs simultaneously by initiating tasks on two or more virtual
consoles. It is compatible with the CP/M-86 single-tasking operating system. Appli-
cations programs have access to system calls used by Concurrent CP/M-86 to control
the multiprogramming environment. As a result, Concurrent CP/M-86 supports
extended features, such as communication among and synchronization of indepen-
dently running processes. Figure 1-1 depicts the relationships between applications
programs, virtual environments, virtual consoles, and the physical console.

LOGICAL 0S T PHYSICAL I/D SYSTEM

!
|
VIRTUAL VIARTUAL
ENVIRONMENT | CONSOLE

e |
VIATUAL |_[—__:L—_—J__‘> VIRTUAL
ENVIRONMENT CONSOLE
01 I:: o1
|

{
VeRTUAL > PHYSICAL

it
|
ENVIRONMENT (
22 l CONSOLE
I T
[
--1 Ly
|
VIRTUAL VIRTUAL
CONSOLE
K;:
i

-

APPLICATION
PROGRAM
00

APPLICATION
PROGRAM
o1

APPLICATION
PROGRAM
02

TERMINAL

MESSAGE

PRDCESS
03

ENVIRONMENT
03 03

T T THL 0

DISK DISK DISK
HARDCOPY
DRIVE DRF:VE . DFF:VE PRINTER

Figure 1-1. Concurrent CP/M-86 Virtual/Physical Environments

DIGITAL RESEARCH™ 11

w
a
O
(=]
- .
=
=
[

1.1 Introduction Concurrent CP/M-86 Programmer’s Guide

In the Concurrent CP/M-86 environment there is an important distinction between
a program and a process. A program is simply a block of code residing somewhere
in memory or on disk; it is essentially static. A process, on the other hand, is a
dynamic entity. You can think of it as a logical machine that executes not only the
program code, but also the operating system routines necessary to support the pro-
gram’s functions.

When Concurrent CP/M-86 loads a program, it creates a process associated with
the loaded program. Subsequently, it is the process, rather than the program, that
obtains access to the system’s resources. Thus, Concurrent CP/M-86 monitors the
process, not the program. This distinction is a subtle one, but vital to your under-
standing of system operation as a whole.

Processes running under Concurrent CP/M-86 fall into two categories: transient
processes and Resident System Processes (RSPs). Transient processes run programs
loaded into memory from disk in response to a user command or system calls made
by another process. Resident system processes run code that is a part of the operating
system itself. RSPs become an integral part of the operating system image during
system generation. They are immediately available to perform operating system tasks.
For example, the CLOCK process is an RSP that maintains the time of day within
the operating system.

The following list briefly summarizes Concurrent CP/M-86’s capabilities.

B Interprocess communication, synchronization, and mutual exclusion functions
are provided by system queues.

B A logical interrupt mechanism using flags allows Concurrent CP/M-86 to
interface with any physical interrupt structure.

® System timing functions enable processes running under Concurrent CP/M-86
to compute elapsed times, delay execution for specified intervals, and to access
and set the current date and time.

W Shared file system allows multiple programs to access common data files while
maintaining data integrity.

DIGITAL RESEARCH™
1-2

Concurrent CP/M-86 Programmer’s Guide

B Virtual console handling lets a single user run multiple programs, each in its

own console environment.

® Real-time process control allows communications and data acquisition with-

out loss of information.

Functionally, Concurrent CP/M-86 is composed of several distinct modules, as

shown in Figure 1-2.

PRCCESIES

TERMINAL

APFLICATION MESSAGE

PROCESS
xx

S8 3URERVISOR

GHARGTER 1 O
MQDULL

BASIC DISK
s

MANAGER

REALTIME
MONITSR

<__
-
- o
-- o

VIRTUAL CONSOLE
SCSSI0N
MANAGER

Ll

T
|
1
'

EXTENDED 110 SYSTEM
'

P - ’ !
[¥
INTERRUPT
consoLe SEenen S conTROL
Figure 1-2. Concurrent CP/M-86 Functional Modules

DIGITAL RESEARCH™

1.1 Introduction

1.1 Introduction Concurrent CP/M-86 Programmer’s Guide

® The Supervisor (SUP)

® The Real-time Monitor (RTM)

m The Memory Management Module (MEM)
® The Character 'O Module (CIO)

The Virtual Console Screen Manager

The Basic Disk Operating System (BDOS)
The Extended I/O System (XIOS)

The Terminal Message Processor (TMP)

The SUP module handles miscellaneous system calls such as returning the version
number or the address of the System Data Area. SUP also calls other system calls
when necessary.

The RTM module monitors the execution of running processes and arbitrates
conflicts for the system’s resources.

The MEM module allocates and frees memory upon demand from executing
processes.

The CIO module handles all character I/O for console and list devices in the
system.

The Virtual Console Screen Manager extends the CIO to support virtual console
environments.

The BDOS is the hardware-independent module that contains the logically invar-
iant portion of the file system for Concurrent CP/M-86. The BDOS file system is
explained in detail in Section 2.

The XIOS is the hardware-dependent module that defines the interface of Concur-

rent CP/M-86 to a specific hardware environment. See the Concurrent CP/M-86
System Guide for an explanation of the XIOS.

DIGITAL RESEARCH™

Concurrent CP/M-86 Programmer’s Guide 1.1 Introduction

When Concurrent CP/M-86 is executing a single program on a single virtual con-
sole, its speed approximates that of CP/M-86. But when multiple processes are run-
ning on several virtual consoles, the execution of each individual process slows
according to the proportion of /O to CPU resources it requires. A process that
performs a large amount of /O in proportion to computing exhibits only minor
speed degradation. This also applies to a process that performs a large amount of
computing, but runs concurrently with other processes that are largely 1/0O-bound.
On the other hand, significant speed degradation occurs where more than one com-
pute-bound process is running.

1.2 Supervisor (SUP)

The Supervisor module (SUP) manages the interface between processes and the
operating system kernel. It also manages internal communication between operating
system modules. All system calls, whether they originate from a transient process or
internally from another system module, go through a common table-driven function
interface in SUP. SUP also handles the P_LOAD (Load Process) and P_CLI (Call
Command Line Interpreter) system calls.

1.3 Real-time Monitor (RTM)

The Real-time Monitor (RTM) is the real-time multitasking nucleus of Concurrent
CP/M-86. The RTM performs process dispatching, queue management, flag manage-
ment, device polling, and system timing tasks. User programs can also call many of
the RTM system calls used to perform these tasks.

1.3.1 Process Dispatching

Although Concurrent CP/M-86 is a multiprocess operating system, only one process
has access to the CPU resource at any given time. Unless you specifically write a
program to communicate or synchronize execution with other processes, a process is
unaware of other processes competing for system resources.

DIGITAL RESEARCH™

1-5

1.3 Real-time Monitor (RTM) Concurrent CP/M-86 Programmer’s Guide

The primary task of the RTM is to transfer, or dispatch, the CPU resource from
one process to another. The RTM module called the Dispatcher performs this task.
The RTM maintains two data structures, the Process Descriptor (PD) and the User
Data Area (UDA), for each process running under Concurrent CP/M-86. The Dis-
patcher uses these data structures to save and restore the current state of each run-
ning process.

Each process in the system resides in one of three states: ready, running, or sus-
pended. A ready process is one that is waiting for the CPU resource only. A running
process is one that the CPU is currently executing. A suspended process is one that is
waiting for a system resource or a specified event, such as the occurrence of an
interrupt, an indication that polled hardware is ready, or the expiration of a delay
period.

Any existing process is represented on a system list. The Dispatcher removes a
process from one list and places it on another. The Process Descriptor of the cur-
rently running process is the first entry on the Ready List. Other processes ready to
run are represented on the Ready List in order of priority. Suspended processes are
on other System Lists, depending on why the processes were suspended.

A dispatch operation can be summarized as follows:

1. The Dispatcher suspends the process from execution and stores its current
state in the Process Descriptor and the UDA.

2. The Dispatcher places the process on an appropriate System List, depending
on why the Dispatcher was called. For example, if a process is to delay for a
certain number of system ticks, its Process Descriptor is placed on the Delay
List. Where a process releases a resource, the process is usually placed back
on the Ready List. If another process is waiting for the resource, that process
is taken off its current System List and also placed on the Ready List.

3. The highest priority process on the Ready List is chosen for execution. If two
or more processes have the same priority, the process that has waited the
longest executes first.

4. The Dispatcher restores the state of the selected process from its Process
Descriptor and UDA, and gives it the CPU resource.

DIGITAL RESEARCH™

1-6

Concurrent CP/M-86 Programmer’s Guide 1.3 Real-time Monitor (RTM)

5. The process executes until it needs a busy resource, a resource needed by
another process becomes available, or an interrupt occurs. At this point, a
dispatch occurs, allowing another process to run.

Only processes on the Ready List are eligible for selection during dispatch. By
definition, a process is on the Ready List if it is waiting only for the CPU resource.
Processes waiting for other system resources cannot execute until the resources they
require are available. Concurrent CP/M-86 blocks a process from execution if it is
waiting for:

B a queue message so it can complete a Q_READ operation.
B space to become available in a queue so it can complete a Q_WRITE operation.
B a console or list device to become available.

B a specified number of system clock ticks before it can be removed from the
system Delay List.

B an [/O event to complete.
These situations are discussed in greater detail in the following sections.

A running process not needing a resource and not releasing one runs until an
interrupt causes a dispatch. While not all interrupts cause dispatches, the system
clock generates interrupts every clock tick and forces a dispatch each time. Clock
ticks usually occur 60 times a second (approximately every 16.67 milliseconds), and
allow time sharing within a real-time environment.

Concurrent CP/M-86 is a priority-driven system. This means that during a dis-
patch, the operating system gives the CPU resource to the process with the best
priority. The Dispatcher allots equal shares of the system’s resources to processes
with the same priority. With priority dispatching, the system never passes control to
a lower-priority process if there is a higher-priority process on the Ready List. Because
high-priority, compute-bound processes tend to monopolize the CPU resource, it is
best to reduce their priority to avoid degrading overall system performance.

DIGITAL RESEARCH™
1-7

1.3 Real-time Monitor (RTM) Concurrent CP/M-86 Programmer’s Guide

1.3.2 Queue Management

Queues perform several critical functions for processes running under Concurrent
CP/M-86. A process can use a queue for communicating with another process, syn-
chronizing its execution with that of another process, and for exclusion of other
processes from protected system resources. A process can make, open, delete, read
from, or write to a queue with system calls similar to those used to manage disk files.

Each system queue consists of two parts: the queue descriptor, and the queue
buffer. Concurrent CP/M-86 implements these special data structures as memory files
that contain room for a specified number of fixed-length messages.

When the Q_MAKE system call creates a queue, this queue is assigned a unique
8-character name. As the name queue implies, messages are read from a queue on a
first-in, first-out basis.

A process can read from or write to a queue conditionally or unconditionally. 1f
the queue is empty when a conditional read is performed, or full when a conditional
write is performed, the system returns an Error Code to the calling process. On the
other hand, if a process attempts an unconditional queue operation in these circum-
stances, the system suspends it from execution until the operation becomes possible.

More than one process can wait to read or write a queue message from the same
queue at the same time. When these operations become possible, the system restores
the highest priority process first; processes with the same priority are restored on a
first-come, first-served basis.

Mutual exclusion queues are a special type of queue under Concurrent CP/M-86.
They contain one message of zero length and their names follow a convention, begin-
ning with the upper-case letters MX. A mutual exclusion queue acts as a binary
semaphore, ensuring that only one process uses a resource at any time.

Access to a resource protected by a mutual exclusion queue takes place as follows:

1. A process issues an unconditional Q_READ call to the MX queue protecting
the resource, thereby suspending itself if the message is not available.

@ DIGITAL RESEARCH™

1-8

Concurrent CP/M-86 Programmer’s Guide 1.3 Real-time Monitor (RTM)

2. When the message becomes available, the process accesses the protected
resource. Note that from the time the process issues the unconditional read,
any other process attempting to access the same resource is suspended.

3. The process writes the zero-length message back to the queue when it has
finished using the protected resource, thus freeing the resource for other
processes.

As an example, the system mutual exclusion queue, MXdisk, ensures that processes
cannot access the file system simultaneously. Note that the BDOS, not the application
software, executes the preceding series of queue calls. Therefore the mutual exclusion
process is transparent to the programmer, who is only responsible for originating the
disk system calls.

Mutual exclusion queues differ from normal queues in another way. When a process
reads a message from a mutual exclusion queue, the RTM notes the Process Descrip-
tor address within the Queue Descriptor. This establishes the owner of the queue
message. If the operating system aborts the process while it owns the mutual exclu-
sion message, the RTM automatically writes the message back to all mutual exclu-
sion queues whose messages are owned by the aborted process. This grants other
processes access to protected resources owned by the aborted process.

1.3.3 System Timing Functions

Concurrent CP/M-86’s timing system calls include keeping the time of day and delay-
ing the execution of a process for a specified period of time. An internal process
called CLOCK provides the time of day for the system. This process issues
DEV_WAITFLAG system calls on the system’s one second flag, Flag 2. When the
XIOS Tick Interrupt Handler sets this flag, it initiates the CLOCK process, which
then increments the internal time and date.

W DIGITAL RESEARCH™
1-9

1.3 Real-time Monitor (RTM) Concurrent CP/M-86 Programmer’s Guide

Subsequently, the CLOCK process makes another DEV_WAITFLAG call and sus-
pends itself until the flag is set again. Concurrent CP/M-86 provides system calls that
allow you to set and access the internal date and time. In addition, the file system
uses the internal time and date to record when a file is updated, created, or last
accessed.

The P_DELAY system call replaces the typical programmed delay loop for delay-
ing process execution. P_DELAY requires that Flag 1, the system tick flag, be set
approximately every 16.67 milliseconds, or 60 times a second; the XIOS Tick Inter-
rupt Handler also sets this flag. When a process makes a P_DELAY system call, it
specifies the number of ticks for which the operating system is to suspend it from
execution. The system maintains the address of the Process Descriptor for the process
on an internal Delay List along with its current delay tick count. When a DEV_SET-
FLAG call occurs, setting flag 1, the tick count is decremented. When the delay count
goes to zero, the system removes the process from the Delay List and places it on the
Ready List.

Note: the length of a tick might vary from installation to installation. For instance,
in Europe, a tick is commonly 20 milliseconds, yielding 50 ticks per second. The
description of the P_DELAY system call in Section 6 describes how to determine the
correct number of ticks to delay 1 second.

1.4 Memory Module (MEM)

Concurrent CP/M-86 supports an extended, fixed partition model of memory man-
agement; the Memory Module handles all memory management system calls. In
practice, the exact method that the operating system uses to allocate and free mem-
ory is transparent to the application program. Therefore you should take care to
write code independent of the memory management model; use only the Concurrent
CP/M-86-specific memory system calls described in Section 6.

10 DIGITAL RESEARCH™

Concurrent CP/M-86 Programmer’s Guide 1.5 Basic Disk Operating System (BDOS)

1.5 Basic Disk Operating System (BDOS)

The Concurrent CP/M-86 BDOS is an upward-compatible version of the single-
tasking CP/M-86 BDOS. It handles file creation and deletion, facilitates sequential or
random file access, and allocates and frees disk space. In most cases, CP/M-86 pro-
grams that make BDOS calls for /O can run under Concurrent CP/M-86 without
modification. Concurrent CP/M-86’s BDOS is extended to provide support for mul-
tiple virtual consoles and list devices. In addition, the file system is extended to
provide services required in a multitasking environment. The major extensions to the
file system are

® File locking. Files opened under Concurrent CP/M-86 cannot be opened or
deleted by other tasks. This feature prevents accidental conflicts with other
tasks.

m Shared access to files. As a special option, independent users can open the
same file in shared or unlocked mode. Concurrent CP/M-86 supports record
locking and unlocking commands for files opened in this mode and protects
files opened in shared mode from deletion by other tasks.

® Date Stamps. The BDOS optionally supports two time and date stamps, one
recording when a file is updated, and the other recording when the file was
created or last accessed.

® Password Protection. The password protection feature is optional at either the
file or drive level. The operator or applications program assigns disk drive
passwords, while application programs can assign file protection passwords in
several modes.

® Extended Error Module. Besides the default error mode, Concurrent CP/M-86

has two optional error-handling modes that return an error code to the calling
process in the event of an irrecoverable disk error.

W DIGITAL RESEARCH™

1.6 Character I/0 Module (CIO) Concurrent CP/M-86 Programmer’s Guide

1.6 Character I/O Module (CIO)

The Character I/O module handles all console and list I/O. Under Concurrent
CP/M-86, every character /O device is associated with a data structure called a
Console Control Block (CCB) or a List Control Block (LCB). These data structures
reside in the XIOS. The CCB contains the current owner, status information, line
editing variables, and the root of a linked list of Process Descriptors (PDs) that are
waiting for access. More than one process can wait for access to a single console.
These processes are maintained on a linked list of Process Descriptors in priority
order. The LCBs contain similar information about the list devices. See the Concur-
rent CP/M-86 System Guide for more information about LCBs and CCBs.

1.7 Virtual Console Screen Management

Virtual console screen management is coordinated by four separate modules: the
CIO, the PIN (Physical INput) and VOUT (Virtual OUTput) processes, and the
XIOS. The line editing associated with the C_READSTR call is performed in the
CIO. The PIN process handles keyboard input for all the virtual consoles; it also
traps and implements the CTRL-C, CTRL-S, CTRL-Q, CTRL-P, and CTRL-O func-
tions. The VOUT process spools console output from processes running on back-
ground buffered mode consoles, and handshakes with the PIN process to display
spooled console output when the background console is brought to the foreground.
The XIOS decides which special keys represent the virtual consoles, and returns a
special code from IO_CONIN when you request a screen switch. The XIOS also
implements any screen saving and restoring when screens are switched. See the Con-
current CP/M-86 System Guide and the discussion of the IO_SWITCH function.

The PIN process reads the keyboard by directly calling the XIOS IO_CONIN
function. This is the only place in the operating system IO_CONIN is called. The
PIN scans the input stream from the keyboard for switch screen requests and the
special function keystrokes CTRL-C, CTRL-S, CTRL-Q, CTRL-P, and CTRL-O. All
other keyboard input is written to the VINQ (Virtual Console INput Queue) associ-
ated with the foreground virtual console. The data in the VINQ becomes a type-
ahead buffer for each virtual console, and is returned to the process attached to that
console as it performs console input.

DIGITAL RESEARCH™

Concurrent CP/M-86 Programmer’s Guide 1.7 Virtual Console Screen Management

When PIN sees a CTRL-C it calls P_ABORT to abort the process attached to the
virtual console, flushes the type-ahead buffer in the VINQ, turns off CTRL-S, and
performs a DRV_RESET call for each logged-in drive. The P_ABORT call succeeds
when the Process Keep flag is not on, saving the Terminal Message Processes (refer
to P_CREATE for information on the process descriptor). The DRV_RESET calls
affect only the removable media drives, as specified in the CKS field of the Disk
Parameter Blocks in the XIOS (refer to the Concurrent CPIM-86 System Guide for
further details on Disk Parameter Blocks).

CTRL-S stops any output to the screen. CTRL-S stays set when a virtual console
is switched to the background.

CTRL-O discards any console output to the virtual console. CTRL-O is turned off
when any other key is subsequently pressed, except for the keys representing the
virtual consoles.

CTRL-P echoes console output to the default list device specified in the LIST field
of the process descriptor attached to the virtual console. If the list device is attached
to a process, a PRINTER BUSY message appears.

All of the above control keys can be disabled by the C_MODE call. When one of
the above control characters is disabled with C_MODE or when the process owning
the virtual console is using the C_RAWIO call, the PIN does not act on the control
character but instead writes it to the VINQ. It is thus possible to read any of the

above control characters from an application program. These control keys are dis-
cussed in depth in the Concurrent CPIM-86 User’s Guide.

1.8 Extended Input/Output System (XIOS)

The XIOS module is similar to the CP/M-86 Basic Input/Output System (BIOS)
module, but it is extended in several ways. Primitive operations, such as console I/O,
are modified to support multiple virtual consoles. Several new primitive system calls,
such as DEV_POLL, support Concurrent CP/M-86’s additional features, including
elimination of wait loops for real-time I/O operations.

DIGITAL RESEARCH™

1.9 Terminal Message Processes (TMP) Concurrent CP/M-86 Programmer’s Guide

1.9 Terminal Message Processes (TMP)

The Concurrent CP/M-86 Terminal Message Processes (TMPs) are resident system
processes that accept command lines from the virtual consoles and call the Command
Line Interpreter (CLI) to execute them. The TMP prints the prompt on the virtual
consoles.

Each virtual console has an independent TMP defining that console’s environment,
including default disk, user number, printer, and console.

1.10 Transient Programs

Under Concurrent CP/M-86, a transient program is one that is not system-resident.
The system must load such programs from disk into available memory every time it
executes. The command file of a transient program is identified by the filetype CMD.
When you enter a command at the console, the operating system searches on disk
for the appropriate CMD file, loads it, and initiates it. Concurrent CP/M-86 supports
three different execution models for transient programs: the 8080 Model, the Small
Model, and the Compact Model. Sections 4.1.1 through 4.1.3 describe these models
in detail.

i@ DIGITAL RESEARCH™

1-14

Concurrent CP/M-86 Programmer’s Guide 1.11 System Call Calling Conventions

1.11 System Call Calling Conventions

When a Concurrent CP/M-86 process makes a system call, it loads values into the
registers shown in Table 1-1 and initiates Interrupt 224 (via the INT 224 instruc-
tion), reserved by the Intel® Corporation for this purpose.

Table 1-1. Registers Used by System Calls
ENTRY PARAMETERS

Register CL: System Call Number
DL: Byte Parameter
or
DX: Word Parameter
or

DX: Address - Offset
DS: Address - Segment

RETURN VALUES
Register AL: Byte Return
or
AX: Word Return
or

AX: Address - Offset
ES: Address - Segment

BX: Same as AX
CX: Error Code

Concurrent CP/M-86 preserves the contents of registers SI, DI, BP, SP, SS, DS, and
CS through the operating system calls. The ES register is preserved when it is not
used to hold a return segment value. Error codes returned in CX are shown in
Table 6-5, CX Error Codes.

DIGITAL RESEARCH™

1.12 SYSTAT: System Status Concurrent CP/M-86 Programmer’s Guide

1.12 SYSTAT: System Status

The SYSTAT utility is a development tool that shows the internal state of Concur-
rent CP/M-86. SYSTAT describes memory allocation, current processes, system queue
activity, and many informative parameters associated with these system data struc-
tures. Furthermore, SYSTAT presents two views: either a static snapshot of system
activity, or a continuous, real-time window into Concurrent CP/M-86.

You can specify SYSTAT in one of two modes. If you know which display you
want, you can specify it in the invocation, using an option shown in the menu below.
If you do not specify an option, select a display from this menu by typing

A>SYSTAT <cr?
The screen clears and the main menu appears:
Which Option?

H(elr)

M(emory)
O(verview)
P(rocesses - All)
Q(ueues)

U(ser Processes)
E(xit)

Y

-

Press the appropriate letter to obtain a display.

DIGITAL RESEARCH™

Concurrent CP/M-86 Programmer’s Guide 1.12 SYSTAT: System Status

When you select H(elp), the HELP file demonstrates the proper syntax and avail-
able options:

To use SYSTAT with the menu: At the system Prompt type SYSTAT <{CR:

To use SYSTAT without the menu: At the system PromPt tyrPe the command

SYSTAT [ortionl -or-
SYSTAT L[ortion C1 -or-
SYSTAT [ortion C ##]

-where-

-» oPtion =
M(emory) P({rocesses) O(verview)
Ulser Processes) Q(ueues) Hlelr)

-» C = Continuous disrlay
##% = 1-2 digits indicating the Period:
in secondss between disrlay refreshes.

Type any letter to return to the menu.

The M, P, Q, and U options ask you if you prefer a continuous display. If you
type v, Concurrent CP/M-86 asks for a time interval, in seconds, and then displays a
real-time window of information. If you type n, a static snapshot of the requested
information appears. In either case, press any key to return to the menu.

The M(emory) option displays all memory potentially available to you, but it does
not display restricted memory. The partitions are listed in memory-address order.
Length parameter is shown in paragraph values.

The P(rocess) option displays all system processes and the resources they are using.

The Q(ueues) option displays all system queues, listing queue readers, writers, and
owners.

1 DIGITAL RESEARCH™
1-17

1.12 SYSTAT: System Status Concurrent CP/M-86 Programmer’s Guide

The U(ser Processes) option displays only user-initiated processes in the same for-
mat as the P(rocess) option.

The O(verview) option displays an overview of the system parameters, as specified
at system generation time. The display is not continuous.

The E(xit) option returns you to system level from the menu, as does CTRL-C.

End of Section 1

@ DICITAL RESEARCH™
1-18

Section 2
The Concurrent CP/M-86 File System

2.1 File System Overview

The Basic Disk Operating System (BDOS) file system supports from one to sixteen
logical drives. Each logical drive has two regions: a directory area and a data area.
The directory area defines the files that exist on the drive and identifies the data area
space that belongs to each file. The data area contains the file data defined by the
directory.

The directory area consists of sixteen logically independent directories. These direc-
tories are identified by user numbers 0 through 15. During execution, a process runs
with a system parameter called the user number set to a single value. The user
number specifies the current active directories for all drives on the system. For exam-
ple, the Concurrent CP/M-86 DIR utility displays only files within a directory selected
by the current user number.

The file system automatically allocates directory and data area space when a process
creates or extends a file, and returns previously allocated space to free space when a
process deletes or truncates a file. If no directory or data space is available for a
requested operation, the BDOS returns an error code to the calling process. The
allocation and retrieval of directory and data space is transparent to the calling
process. As a result, you need not be concerned with directory and drive organization
when using the file system calls.

An eight-character filename and a three-character filetype field identify each file in
a directory. Together, these fields must be unique for each file within a directory.
However, files with the same filename and filetype can reside in different user direc-
tories without conflict. Processes can also assign an eight-character password to a file
to protect it from unauthorized access.

DIGITAL RESEARCH™

2-1

7 UONIG

2.1 File System Overview Concurrent CP/M-86 Programmer’s Guide

All system calls that involve file operations specify the requested file by filename
and filetype. For some system calls, multiple files can be specified by a technique
called ambiguous reference. This technique uses question marks and asterisks as
wildcard characters to give the file system a pattern to match as it searches a directory.

The file system supports two categories of system calls: file-access system calls and
drive-related system calls. The file-access system calls have mnemonics beginning with
F , and the drive-related system calls have mnemonics beginning with DRV_. The
next two sections introduce the file system calls.

2.1.1 File-access System Calls

Most of the file-access system calls can be divided into two groups: system calls that
operate on files within a directory and system calls that operate on records within a
file. However, the file-access category also includes several miscellaneous functions
that either affect the execution of other file-access system calls or are commonly used
with them.

System calls in the first file-access group include calls to search for one or more
files, delete one or more files, rename or truncate a file, set file attributes, assign a
password to a file, and compute the size of a file. Also included in this group are
system calls to open a file, to create a file, and to close a file.

The second file-access group includes system calls to read or write records to a file,
either sequentially or randomly, by record position. BDOS read and write system
calls transfer data in 128 byte units, which is the basic record size of the file system.
This group also includes system calls to lock and unlock records and thereby allow
multiple processes to coordinate access to records within a commonly accessed file.

Before making read, write, lock, or unlock system calls for a file, you must first
open or create the file. Creating a file has the side effect of opening the file for record
access. In addition, because Concurrent CP/M-86 supports three different modes of
opening files (Locked, Unlocked, and Read-Only), there can be other restrictions on
system calls in this group that are related to the open mode. For example, you cannot
write to a file that you have opened in Read-Only mode.

9 DIGITAL RESEARCH™

Concurrent CP/M-86 Programmer’s Guide 2.1 File System Overview

After a process has opened a file, access to the file by other processes is restricted
until the file is closed. Again, the exact nature of the restrictions depends on the open
mode. However, in all cases the file system does not allow a process to delete,
rename, or change a file’s attributes if another process has opened the file. Thus, the
close system call performs two steps to terminate record access to a file. It perma-
nently records the current status of the file in the directory and removes the open-file
restrictions limiting access to the file by other processes.

The miscellaneous file-access system calls include calls to set the current user num-
ber, set the DMA address, parse an ASCII file specification and set a default pass-
word. This group also includes system calls to set the BDOS Multisector Count and
the BDOS Error Mode. The BDOS Multisector count determines the number of 128-
byte records to be processed by the read, write, lock, and unlock system calls. The
Multisector count can range from 1 to 128; the default value is one. The BDOS
Error Mode determines whether the file system intercepts certain errors or returns on
all errors to the calling process.

2.1.2 Drive-related System Calls

BDOS drive-related system calls select the default drive, compute a drive’s free space,
interrogate drive status, and assign a directory label to a drive. A drive’s directory
label controls whether the file system enforces file password protection for files in the
directory. It also specifies whether the file system is to perform date and time stamp-
ing of files on the drive.

This category also includes system calls to reset specified drives and to control
whether other processes can reset particular drives. When a drive is reset, the next
operation on the drive reactivates it by logging it in. Logging in a drive initializes the
drive for directory and file operations. The purpose of a drive reset call is to prepare
for a media change on drives that support removable media. Under Concurrent
CP/M-86, drive reset calls are conditional. A process cannot reset a drive if another
process has a file open on the drive.

1 DIGITAL RESEARCH™

2-3

2.1 File System Overview Concurrent CP/M-86 Programmer’s Guide

The following table summarizes the BDOS file system calls.

Table 2-1. File System Calls —

Mnemonic Description
DRV_ACCESS Access Drive
DRV_ALLOCVEC Get Drive Allocation Vector
DRV_ALLRESET Reset All Drives
DRV_DPB Get Disk Parameter Block Address
DRV_GET Get Default Drive
DRV_GETLABEL Get Directory Label
DRV_FLUSH Flush Data Buffers
DRV_FREE Free Drive
DRV_LOGINVEC Return Drives Logged In Vector
DRV_RESET Reset Drive
DRV_ROVEC Return Drives R/O Vector
DRV_SETLABEL Set Directory Label
DRV_SET Set (Select) Drive
DRV_SETRO Set Drive To Read-Only
DRV_SPACE Get Free Space On Drive o
F_ATTRIB Set File’s Attributes
F_CLOSE Close File
F_DELETE Delete File
F_DMASEG Set DMA Segment
F DMAGET Get DMA Address
F_DMAOFF Set DMA Offset
F_ERRMODE Set BDOS Error Mode
F LOCK Lock Record In File
F_MAKE Make A New File
F_MULTISEC Set BDOS Multisector Count
F_OPEN Open File
F_PARSE Parse Filename
F_PASSWD Set Default Password

DIGITAL RESEARCH™

2-4

Concurrent CP/M-86 Programmer’s Guide 2.1 File System Overview

Table 2-1. (continued)

Mnemonic Description
F_RANDREC Return Record Number For File Read-Write
F_READ Read Record Sequentially From File
F_READRAND Read Random Record From File
F_RENAME Rename File
F_SIZE Compute File Size
F_SFIRST Directory Search First
F SNEXT Directory Search Next
F_TIMEDATE Return File Time/Date Stamps Password Mode
F_TRUNCATE Truncate File
F_UNLOCK Unlock Record In File
F_USERNUM Set/Get Directory User Number
F_WRITE Write Record Sequentially Into File
F_WRITERAND Write Random Record Into File
F_WRITEZF Write Random Record With Zero Fill
F_WRITEXFCB Write File’s XFCB

The following sections contain information on important topics related to the file
system. Read these sections carefully before attempting to use the system calls described
individually in Section 6.

2.2 File Naming Conventions
Under Concurrent CP/M-86, a file specification consists of four parts: a drive
specifier, the filename field, the filetype field, and the file password field. The general
format for a command line file specification is shown below:
{d:} filename {.typ} {;password}
The drive specifier field specifies the drive where the file is located. The filename and

filetype fields identify the file. The password field specifies the password if a file is
password protected.

@ DIGITAL RESEARCH™
2-5

2.2 File Naming Conventions Concurrent CP/M-86 Programmer’s Guide

The drive, type, and password fields are optional, and the delimiters : . ; are
required only when specifying their associated fields. The drive specifier can be assigned
a letter from A to P, where the actual drive letters supported on a given system are
determined by the XIOS implementation. When the drive letter is not specified, the
current default drive is assumed.

The filename and password fields can contain one to eight nondelimiter characters.
The filetype field can contain one to three nondelimiter characters. All three fields are
padded with blanks, if necessary. Omitting the optional type or password fields
implies a uield specification of all blanks.

Under Concurrent CP/M-86, the P_CLI system call interprets ASCIl command
lines and loads programs. The P_CLI system call makes F_PARSE system calls to
parse file specifications from a command line. F_PARSE recognizes certain ASCII

characters as delimiters when it parses a file specification. These characters are shown
in Table 2-2.

Table 2-2. Valid Filename Delimiters

ASCII Hex Equivalent
null 000H
space 020H
return 00DH
tab 009H
: 03AH
. 02EH
; 03BH
= 03DH
, 02CH
[0SBH
] 05DH
< 03CH
> 03EH
| 07CH

%) DIGITAL RESEARCH™
2-6

Concurrent CP/M-86 Programmer’s Guide 2.2 File Naming Conventions

The F_PARSE system call also excludes all control characters from the file specifica-
tion fields and translates all lower-case letters to upper-case.

Avoid using parentheses and the backslash character, \, in the filename and
filetype fields because they are commonly used delimiters. Use asterisk and question
mark characters, * and ?, only to make an ambiguous file reference. When F_PARSE
encounters an asterisk in a filename or filetype field, it pads the remainder of the field
with question marks. For example, a filename of X*.* is parsed to X?2?22222.222. The
BDOS F_SFIRST, F_SNEXT, and F_DELETE system calls match a question mark in
the filename or filetype fields to the corresponding position of any directory entry
belonging to the current user number. Thus, a search operation for X2222222.22? finds
all the files in the current user directory beginning in X. Most other file-access BDOS
system calls treat the presence of a question mark in the filename or filetype fields as
an error.

It is not mandatory to follow the file naming conventions of Concurrent CP/M-86
when you create or rename a file with BDOS system calls directly from an applica-
tion program. However, the conventions must be used if the file is to be accessed
from a command line. For example, the P_CLI system call cannot locate a command
file in the directory if its filename or filetype field contains a lower-case letter.

As a general rule, the filetype field names the generic category of a particular file,
and the filename field distinguishes individual files within each category. Although
they are generally arbitrary, Table 2-3 lists some of the generic filetype categories
that have been established.

DIGITAL RESEARCH™

2-7

2.2 File Naming Conventions Concurrent CP/M-86 Programmer’s Guide

Table 2-3. Filetype Conventions

Filetype Description
A86 8086 Assembler Source
ASM Assembler Source
BAK Text or Source Back-up
BAS BASIC Source File
C C Source File
CMD 8086 Command File
COM 8080 Command File
CON CCP/M-86 Modules
DAT Data File
HEX HEX Machine Code
H86 ASMS86 HEX File
INT Intermediate File
LIB Library File
LST List File
PLI PL/I Source File
PRL Page Relocatable
REL Relocatable Module
RSP Resident System Process
SPR System Page Relocatable
SUB SUBMIT File
sUP Startup File
SYM Symbol File
SYS System File
$8% Temporary File

2.3 Disk Drive and File Organization

The file system can support up to sixteen logical drives, identified by the letters A
through P. A logical drive usually corresponds to a physical drive on the system,
particularly for physical drives that support removable media such as floppy disks.
High-capacity hard disks, however, are commonly divided up into multiple logical
drives. If a disk contains system tracks reserved for the boot loader, these tracks
precede the tracks of the disk mapped by the logical drive. In this manual, references
to drives means logical drives, unless explicitly stated otherwise.

DIGITAL RESEARCH™

2-8

Concurrent CP/M-86 Programmer’s Guide 2.3 Disk Drive and File Organization

The maximum file size supported on a drive is 32 megabytes. The maximum capacity
of a drive is determined by the data block size specified for the drive in the XIOS.
The data block size is the basic unit in which the BDOS allocates space to files. Table
2-4 displays the relationship between data block size and total drive capacity.

Table 2-4. Drive Capacity

Data Block Size Maximum Drive Capacity
1K 256 kilobytes
2K 64 megabytes
4K 128 megabytes
8K 256 megabytes
16K 512 megabytes

Each drive is divided into two regions: a directory area and a data area. The
directory area contains from one to sixteen blocks located at the beginning of the
drive. The actual number is set in the XIOS. Directory entries residing in this area
define the files that exist on the drive. In addition, the directory entries belonging to
a file identify the data blocks in the drive’s data area that contain the file’s records.
The directory area is logically subdivided into sixteen independent directories identi-
fied as user 0 through 15. Each independent directory shares the actual directory area
on the drive.

Each disk file consists of a set of up to 262,144 (40000H) 128-byte records. Each
record of a file is identified by its position in the file. This position is called the
record’s Random Record Number. If a file is created sequentially, the first record has
a position of zero, while the last record has a position one less than the number of
records in the file. Such a file can be read sequentially, beginning at record zero, or
randomly by record position. Conversely, if a file is created randomly, records are
added to the file by specified position. A file created in this way is called sparse if
positions exist within the file where a record has not been written.

@ DIGITAL RESEARCH™
2-9

2.3 Disk Drive and File Organization Concurrent CP/M-86 Programmer’s Guide

The BDOS automatically allocates data blocks to a file to contain the file’s records
on the basis of the record positions consumed. Thus, a sparse file that contains two
records, one at position zero, the other at position 262,143, consumes only two data
blocks in the data area. Sparse files can only be created and accessed randomly, not
sequentially. Note that any data block allocated to a file is permanently allocated
until the file is deleted or truncated. These are the only mechanisms supported by the
BDOS for releasing data blocks belonging to a file.

Source files under Concurrent CP/M-86 are treated as a sequence of ASCII char-
acters, where each line of the source file is followed by a carriage return/line-feed
sequence, ODH followed by 0AH. Thus, a single 128-byte record could contain
several lines of source text. The end of an ASCII file is denoted by a CTRL-Z
character (1AH), or a real end-of-file, returned by the BDOS read system call. Note
that these source file conventions are not supported in the file system directly but are
followed by Concurrent CP/M-86 utilities such as TYPE and ASM-86™. In addition,
CTRL-Z characters embedded within other types of files such as CMD files do not
signal end-of-file.

2.4 File Control Block Definition

The File Control Block (FCB) is a system data structure that serves as an important
channel for information exchange between a process and BDOS file-access system
calls. A process initializes an FCB to specify the drive location, filename and filetype
fields, and other information that is required to make a file-access call. For example,
in an F_OPEN system call, the FCB specifies the name and location of the file to be
opened. In addition, the file system uses the FCB to maintain the current state and
record position of an open file. Some file-access system calls use special fields within
the FCB for invoking options. Other file-access system calls use the FCB to return
data to the calling program. All BDOS random 1/O system calls require the calling
process to specify the Random Record Number in a 3-byte field at the end of the
FCB.

012 DIGITAL RESEARCH™
2-10

Concurrent CP/M-86 Programmer’s Guide 2.4 File Control Block Definition

When a process makes a BDOS file-access system call, it passes an FCB address to
the BDOS. This address has two 16-bit components: register DX, which contains the
offset, and register DS, which contains the segment. The length of the FCB data area
depends on the BDOS system call. For most system calls, the minimum length is 33
bytes. For the F_ READRAND, F_WRITERAND, F_WRITEZF, F_LOCK, F_UN-
LOCK, F_ RANDREC, F_SIZE, and F_TRUNCATE system calls, the minimum FCB
length is 36 bytes. When the F_OPEN or F_MAKE system calls open a file in
Unlocked mode, the FCB must be at least 35 bytes long. Figure 2-1 displays the FCB
data structure in two formats.

4 i
DR NAME :[TYPE l EX CS l RS RC DO-D15 CR RO 4[R1 R2

+

00 01... 09... 12 13 14 15 16... 32 33 34 35
+ + + + | 4
00H | DR F1 F2 F3 F4 F5 F6 F7...
-+ -+ -+ -+
08H | F8 T T2 T3 EX T Cs RS l RC
10H | DO D1 D2 D3 D4 D5 D6 D7...
+ + + + -+ -+ +
184 | D8 D9 D10 D11 D12 D13 D14 D15
4 + + +
2004 | CR RO l R1 R2

Figure 2-1. FCB - File Control Block

DIGITAL RESEARCH™

2-11

2.4 File Control Block Definition Concurrent CP/M-86 Programmer’s Guide

The fields in the FCB are defined as follows:

Table 2-5. FCB Field Definitions

Field

Definitions

DR

F1...F8

T1,T2,T3

EX

CS

Drive Code (0 - 16).

0 => use default drive for file
1 => auto disk select drive A
2 => auto disk select drive B

16 => auto disk select drive P

Contain the filename in ASCII upper-case, with high bit = 0. F1’,
..., F8” denote the high-order bit of these positions and are called
attribute bits.

Contain the filetype in ASCII upper-case, with high bit = 0. T1’,
T2’, and T3’ denote the high bit of these positions and are also
called attribute bits.

]

Y
T2
T3’

1 => Read-Only file,
1 => System file,
1 => File has been archived.

Contains the current extent number. This field is usually set to 0
by the calling process, but it can range from 0 to 31 during file
I/O.

Contains the FCB checksum value for open FCBs.

DIGITAL RESEARCH™

2-12

Concurrent CP/M-86 Programmer’s Guide 2.4 File Control Block Definition

Table 2-5. (continued)

Field Definitions
RS Reserved for internal system use.
RC Record count for extent EX. This field takes on values from 0 to

255 (values greater than 128 imply a record count of 128).

DO0...D15 Normally filled in by Concurrent CP/M-86 and reserved for sys-
tem use. Also used to specify the new filename and filetype with
the F_RENAME system call.

CR Current record to read or write in a sequential file operation. This
field is normally set to zero by the calling process when a file is
opened or created.

RO,R1,R2 Optional Random Record Number in the range 0-262,143
(0 - 3FFFFH). RO, R1, R2 constitute an 18-bit value with low
byte RO, middle byte R1, and high byte R2.

Note: the 2-byte File ID is returned in bytes RO and R1 of the FCB when a file is
successfully opened in Unlocked mode (refer to Section 2.14).

2.4.1 FCB Initialization and Usage

The calling process must initialize bytes 0 through 11 of the referenced FCB before
making the following file-access system calls: F_ATTRIB, F_DELETE, F_MAKE,
F_OPEN, F_RENAME, F_SFIRST, F_SIZE, F_SNEXT, F_TIMEDATE, F_TRUN-
CATE, and F_ WRITEXFCB. Normally, the DR field specifies the drive location of
the file, and the name and type fields specify the name of the file. You must also set
the EX field of the FCB before calling F_ MAKE, F_OPEN, F_SFIRST, and F_WRI-
TEXFCB. Except for the F_WRITEXFCB system call, you can usually set this field
to zero. Note that the F_RENAME system call requires the calling process to place
the new filename and filetype in bytes D1 through D11.

DIGITAL RESEARCH™
2-13

2.4 File Control Block Definition Concurrent CP/M-86 Programmer’s Guide

The remaining file-access calls that use FCBs require an FCB that has been initial-
ized by a prior file-access system call. For example, the F_SNEXT system call expects
an FCB initialized by a prior F_SFIRST call. In addition, the F_LOCK, F READ,
F_READRAND, F_UNLOCK, F_WRITERAND, and F_WRITEZF system calls require
an FCB that has been activated for record operations. Under Concurrent CP/M-86,
only the F_OPEN and F_MAKE system calls can activate an FCB.

If you intend to process a file sequentially from the beginning, using the F_READ
and F_WRITE system calls, you must set byte 32 to zero before you make your first
read or write call. In addition, when you make a F_LOCK, F_READRAND, F_UN-
LOCK, F_WRITERAND, or F_WRITEZF system call, you must set bytes RO through
R2 of the FCB to the requested Random Record Number. The F TRUNCATE sys-
tem calls also requires the FCB random record field to be initialized.

The F_SFIRST, F_SNEXT, and F_DELETE system calls support multiple or
ambiguous reference. In general, a question mark in the filename, filetype, or EX
fields matches all values in the corresponding positions of directory entries during a
directory search operation. File directory entries maintained in the directory area of
each disk drive have the same format as FCBs except for byte 0, which contains the
file’s user number, and bytes 32 through 35, which are not present. The search
system calls, F_SFIRST and F_SNEXT, also recognize a question mark in the FCB
DR field, and, if specified, they return all directory entries on the disk regardless of
user number, including empty entries. A directory FCB that begins with ESH is an
empty directory entry.

When the F_OPEN and F_MAKE system calls activate an FCB for record opera-
tions, they copy the FCB’s matching directory entry from disk, excluding byte 0, into
the FCB in memory. In addition, these system calls compute and store a checksum
value in the CS field of the FCB. During subsequent record operations on the file, the
file system uses this checksum field to verify that the FCB has not been modified by
the calling process in an illegal way. Thus, all read, write, lock, and unlock opera-
tions on a file must specify a valid activated FCB; otherwise, the BDOS returns a
checksum error. The BDOS performs this checking to protect the mtegrity of the file
system. In general, you should not modify bytes 0 through 31 of an open FCB,
except to set interface attributes (see Section 2.4.3). Other restrictions related to
activated FCBs are discussed in Section 2.10.

19 DIGITAL RESEARCH™

2-14

Concurrent CP/M-86 Programmer’s Guide 2.4 File Control Block Definition

The BDOS updates the memory copy of the FCB during file processing to maintain
the current position within the file. During file write operations, the BDOS also
updates the memory copy of the FCB to record the allocation of data blocks to the
fle. At the termination of file processing, the F_CLOSE system call permanently
records this information on disk.

Note that the BDOS does not record the data blocks allocated to a file during
write operations in the disk directory until the calling process issues an F_CLOSE
call. Therefore, a process that creates or modifies files must close the files at the
termination of file processing. Otherwise, data might be lost.

2.4.2 File Attributes

The high-order bits of the FCB filename (F1’,...,F8’) and filetype fields (T1°,T2’,T3’)
are called attribute bits. Attribute bits are 1-bit Boolean fields, where 1 indicates on
or true, and 0 indicates off or false. Attribute bits indicate two kinds of attributes
within the file system: file attributes and interface attributes. The file attributes are
described in this section. Section 2.4.3 describes interface attributes.

The file attribute bits, F1’,...,F4’ and T1’, T2’, T3’, indicate that a file has a defined
attribute. These bits are recorded in a file’s directory FCBs. File attributes can be set
or reset only by the F_ATTRIB system call. When the F_MAKE system call creates
a file, it initializes all file attributes to zero. A process can interrogate file attributes
in an FCB activated by the F_OPEN system call, or in directory FCBs returned by
the F_SFIRST and F_SNEXT system calls.

Note: the file system ignores the file attribute bits when it attempts to locate a file
in the directory.

10 DIGITAL RESEARCH™

2-15

2.4 File Control Block Definition Concurrent CP/M-86 Programmer’s Guide

The file system defines file attributes T1°,T2’,and T3’ as follows:

Table 2-6. File Attribute Definitions —.

Attribute Definition

T1’: Read-Only Attribute

This attribute, if set, prevents write operations to a file.

T2’: System Attribute

This attribute, if set, identifies the file as a Concurrent CP/M-86
system file. The Concurrent CP/M-86 DIR utility does not usually
display System files. In addition, user-zero system files can be
accessed on a Read-Only basis from other user numbers.

T3’: Archive Attribute

User-written archive programs use this attribute. When an archive
program copies a file to back-up storage, it sets the archive attrib-
ute of the copied files. The file system automatically resets the
archive attribute of a directory entry when writing to the direc-
tory entry’s region of a file. An archive program can test this
attribute in each of the file’s directory entries using the F_SFIRST
and F_SNEXT system calls. If all directory entries have the archive
attribute set, the file has not been modified since the previous
archive. The Concurrent CP/M-86 PIP utility supports file archival.

—

File attributes F1” through F4’ of command files are defined as Compatibility Attri-
butes under Concurrent CP/M-86 (see Section 2.12). However, for all other files,
attributes F1’ through F4’ are available for definition by the user.

DIGITAL RESEARCH™

2-16

Concurrent CP/M-86 Programmer’s Guide

2.4.3 Interface Attributes

2.4 File Control Block Definition

The interface attributes are F5°, F6’, F7’, and F8’. These attributes cannot be used as
file attributes. Interface attributes F5’ and F6’ request options for BDOS file-access
system calls. Table 2-7 lists the F5* and F6’ attribute definitions for the system calls
that define interface attributes. Note that the F5> = 0 and F6’ = 0 definitions are
not listed if their definition simply implies the absence of the option associated with

setting the interface attribute.

Table 2-7. BDOS Interface Attributes F5’ and Fé’

System Call

Attribute

F_ATTRIB

F_CLOSE

F_DELETE

F_LOCK

F_MAKE

F_OPEN

F_RENAME

F_TRUNCATE

F_UNLOCK

FS’
Fé6’

FS’
Fe’

FS’

F5’

F§’
Fé&

I ([

_O O

Fe’ =

F5’
F5’

-0

F6’ =

Fy
FS’
F6’

I

_0 = O

F6 =

F5’

F5’

F5’

(=

: Maintain extended file lock
: Set file byte count

: Partial Close
: Extend file lock

: Delete file XFCBs only and

maintain extended file lock

: Exclusive Lock

: Shared Lock

: Lock existing records only
: Lock logical records

: Open in Locked mode
: Open in Unlocked mode
: Assign password to file

: Open in Locked mode

: Open in Unlocked mode

: Open in mode specified by F$’
: Open in Read-Only mode

: Maintain extended file lock

: Maintain extended file lock

: Unlock all locked records

4 DIGITAL RESEARCH™

2-17

2.4 File Control Block Definition Concurrent CP/M-86 Programmer’s Guide

Section 6 details the above interface attribute definitions for each of the preceding
system calls. Note that the BDOS always resets interface attributes F5’ and F6’ before
returning to the calling process. Interface attributes F7’ and F8’ are reserved for
internal use by the file system.

2.5 User Number Conventions

The Concurrent CP/M-86 user facility divides each drive directory into sixteen
logically independent directories, designated as user O through user 15. Physically, all
user directories share the directory area of a drive. In most other aspects, however,
they are independent. For example, files with the same name can exist on different
user numbers of the same drive with no conflict. However, a single file cannot extend
across more than one user number.

Only one user number is active for a specific process at one time. For this process,
the current user number applies to all drives on the system. Furthermore, the FCB
format does not contain a field that can override the current user number. As a
result, all file and directory operations reference only directory entries associated with
the current user number.

It is possible for a process to access files on different user numbers by setting the
user number to the file’s user number with the F_USERNUM system call before issuing
the BDOS call. However, if a process attempts to read or write to a file under a user
number different from the user number that was active when the file was opened, the
file system returns an FCB checksum error.

When the P_CLI system call initiates a transient process or Resident System Process
(described in detail in Section 5), it sets the user number to the default value estab-
lished by the process issuing the P_CLI system call. The sending process is usually
the TMP. However, the sending process can be another process, such as a transient
program that makes a P_CHAIN call. A transient process can change its user number
by making a F_USERNUM call. Changing the user number in this way does not
affect the command line user number displayed by the TMP. Thus, when a transient
process that has changed its user number terminates, the TMP restores and displays
the original user number in the command line prompt when it regains control.

19 DIGITAL RESEARCH™

2-18

Concurrent CP/M-86 Programmer’s Guide 2.5 User Number Conventions

User 0 has special properties under Concurrent CP/M-86. The file system automat-
ically opens files listed under user zero but requested under another user number if
the file is not present under the current user number, and if the file on user zero has
the system attribute (T2’) set. This convention allows utilities, including overlays and
any other commonly accessed files, to reside on user zero, but remain available to
other users. This eliminates the need to copy commonly used utilities to all user
numbers on a directory, and gives the Concurrent CP/M-86 user control over which
files are accessible to the different user areas.

2.6 Directory Labels and XFCBs

The file system includes three special types of FCBs: the directory label and the
XFCB, described in this section, and the SFCB, described in detail in Section 2.8.

The directory label specifies for its drive whether password support is to be acti-
vated, and if date and time stamping for files is to be performed. The format of the
directory label is shown below in Figure 2-2.

DR| NAME TYPE DL|S1|S2|RC| PASSWORD TS1 TS2

00 01... 09... 12 13 14 15 16... 25. 29.

Figure 2-2. Directory Label Format

® DIGITAL RESEARCH™
2-19

2.6 Directory Labels and XFCBs

Table 2-8. Directory Label Field Definitions

Concurrent CP/M-86 Programmer’s Guide

Field Definition

DR drive code (0 - 16)

Name directory label name

Type directory label type

DL directory label data byte
Bit 7 - enable password support
Bit 6 - perform access time stamping
Bit 5 - perform update time stamping
Bit 4 - perform create time stamping
Bit O - Directory Label exists
(Bit references are right to left, relative to 0)

$1,82,RC reserved for future use

Password 8-byte password field (encrypted)

TS1 4-byte creation time stamp field

TS2 4-byte update time stamp field

Only one directory label can exist in a drive’s directory area. The directory label

name and type fields are not used to search for a directory label; they can be used to
identify a disk.

2-20

DIGITAL RESEARCH™

Concurrent CP/M-86 Programmer’s Guide 2.6 Directory Labels and XFCBs

You can use the DRV_SETLABEL system call to create a directory label or update
its fields. This system call can also assign a password to a directory label. The
directory label password, if assigned, cannot be circumvented, whereas file password
protection on a drive is an option controlled by the directory label. Thus, access to
the directory label password provides the ability to bypass password protection on
the drive.

Note: the file system provides no specific system call to read the directory label
FCB directly. However, you can read the directory label data byte directly with the
BDOS system call, DRV_GETLABEL. In addition, you can use the BDOS search
system calls F_SFIRST and ¥_SNEXT to find a directory label. You can identify the
directory label by a value of 32 (020H) in byte O of the directory FCB.

The XFCB is an extended FCB that can optionally be associated with a file in the
directory. If present, it contains the file’s password and password mode. The format
of the XFCB is shown below in Figure 2-3.

1
DR| FILE TYPE {PM|S1|[S2|RC| PASSWORD RESERVED
1

00 01... 09... 12 13 14 15 16...... 25. 29.

Figure 2-3. XFCB - Extended File Control Block

DIGITAL RESEARCH™
2-21

2.6 Directory Labels and XFCBs Concurrent CP/M-86 Programmer’s Guide

The fields in the XFCB are defined in Table 2-9:

Table 2-9. XFCB Field Definitions

Field Definition
DR drive code (0 - 16)
File filename field
Type filetype field
PM password mode

Bit 7 - Read mode

Bit 6 - Write mode

Bit 5 - Delete mode

(Bit references are right to left, relative to 0)

§1,52,RC reserved for system use
Password 8-byte password field (encrypted)
Reserved 8-byte area reserved for future use

An XFCB can only be created on a drive that has a directory label, and only if the
directory label enables password protection. For drives in this state, there are two
ways to create an XFCB for a file: with the F_ MAKE system call or the F_WRI-
TEXFCB system call. The F_MAKE system call creates an XFCB if the calling process
requests that a password be assigned to the created file. The F_ WRITEXFCB system
call creates an XFCB when it is called to assign a password to an existing file. You
can identify an XFCB in the directory by a value of 16 (010H)+ N in byte O of the
FCB, where N equals the user number.

i00) DIGITAL RESEARCH™

2-22

Concurrent CP/M-86 Programmer’s Guide 2.7 File Passwords

2.7 File Passwords

There are two ways to assign passwords to a file: by the F_MAKE system call or
by the F_WRITEXFCB system call. You can also change a file’s password or pass-
word mode with the F_WRITEXFCB system call if you can supply the original
password. Note that you cannot change a file’s password or password mode if pass-
word protection for the drive is disabled by the directory label. However, even if you
cannot supply a file’s password, you can delete a file’s XFCB, thereby removing its
password protection, if password protection is disabled on the drive.

The Concurrent CP/M-86 BDOS provides password protection in one of three
modes when password support is enabled by the directory label. Table 2-10 shows
the difference in access level allowed to BDOS system calls when the password is not
supplied.

Table 2-10. Password Protection Modes

Mode Access Level Allowed Without Password
(1) Read Cannot be read, modified, or deleted.
(2) Write Can be read, but not modified or deleted.
(3) Delete Can be read and modified, but not deleted.

If a file is password protected in Read mode, a process must supply the password to
open the file. Processes cannot write to a file protected in Write mode without the
password. A file protected in Delete mode allows read and write access, but a process
must specify the password to delete or truncate the file, rename the file, or to modify
the file’s attributes. Thus, password protection in mode 1 implies mode 2 and 3
protection, and mode 2 protection implies mode 3 protection. All three modes require
the user to specify the password to delete or truncate the file, rename the file, or to
modify the file’s attributes.

0 DIGITAL RESEARCH™

2-23

2.7 File Passwords Concurrent CP/M-86 Programmer’s Guide

If a process supplies the correct password or the directory label disables password
protection, then access to the BDOS system calls is the same as for a file that is not
password-protected. In addition, the F_SFIRST and F_SNEXT system calls are not
affected by file passwords. The following BDOS system calls test for passwords.

DRV_SETLABEL
F_ATTRIB
F_DELETE
F_OPEN
F_RENAME
F_WRITEXFCB
F_TRUNCATE

The BDOS maintains file passwords in the XFCB and directory label in encrypted
form. To make a BDOS system call for a file that requires a password, a process
must place the password in the first eight bytes of the current DMA, or make it the
default password with the F_PASSWD system call, before making the system call.

Note: the BDOS maintains the assigned default password for each process. Processes
inherit the default password of their parent process. You can set a given TMP’s
default password using the SET command; all programs loaded by this TMP inherit
the same default password.

2.8 File Date and Time Stamps: SFCBs

The Concurrent CP/M-86 file system uses a special type of directory entry called
an SFCB to record date and time stamps for files. When a directory has been initial-
ized for date and time stamping, SFCBs reside in every fourth position of the direc-
tory. Each SFCB maintains the date and time stamps for the previous three directory
entries, as shown in Figure 2-4.

1 DIGITAL RESEARCH™

2-24

Concurrent CP/M-86 Programmer’s Guide 2.8 File Date and Time Stamps: SFCBs

FCB1
FCB2
FCB 3
21 STAMPS STAMPS STAMPS /
FORFCB 1 FORFCB2 FOR FCB 3 /
BYTE#: 0 1 11 21 31 32

Figure 2-4. Directory Record with SFCB

This figure shows a 128-byte directory record containing an SFCB. Directory rec-
ords have four directory entries, each 32 bytes long; SFCBs always occupy the last
32-byte entry in the directory record.

The SFCB itself contains five fields. The first field is a single byte containing the
value 021H; this field identifies the SFCB within the directory. The next three fields,
called the SFCB subfields, are each 10 bytes in length and contain the date and time
stamps for their corresponding FCB entries in the directory record. The last byte of
the SFCB is reserved for system use. Figure 2-5 shows the detail of the SFCB subfields.

10 DIGITAL RESEARCH™

2-25

2.8 File Date and Time Stamps: SFCBs Concurrent CP/M-86 Programmer’s Guide

}
CREATE/ACCESS UPDATE PASSWORD RESERVED
TIME AND DATE TIME AND DATE MODE

BYTE #: 0 4 8 9 10

Figure 2-5. SFCB Subfields

An SFCB subfield only contains valid information if its corresponding FCB in the
directory record is an extent zero FCB. This FCB is a file’s first directory entry. For
password protected files, the SFCB subfield also contains the password mode of the
file; the password mode field is zero for files without password protection. You can
read SFCBs by making F_SFIRST and F_SNEXT system calls. In addition, you can
make a F_TIMEDATE system call to retrieve the date and time stamps and password
mode of a specified file. Refer to the T_GET system call definition in Section 6 for
the description of the format of a date and time stamp field.

Concurrent CP/M-86 supports three kinds of file stamping: create, access, and
update. Create stamps record when the file was created, access stamps record when
the file was last opened, and update stamps record the last time the file was modified.
Create and access stamps share the same field. As a result, file access stamps over-
write any create stamps.

i DIGITAL RESEARCH™

2-26

Concurrent CP/M-86 Programmer’s Guide 2.8 File Date and Time Stamps: SFCBs

The directory label of a properly initialized disk determines the type of date and
time stamping for files on the drive. The INITDIR utility initializes a directory for
date and time stamping by placing an SFCB in every fourth directory entry. Disks
not initialized in this way cannot support date and time stamping. In addition, date
and time stamping is not performed if the disk’s directory label is absent or does not
specify date and time stamping, or if the disk is Read-Only.

Note that the directory label is also time stamped, but these stamps are not made
in an SFCB; time stamp fields in the last eight bytes of the directory label show when
it was created and last updated. Access stamping is not supported for directory

labels.

The BDOS file system uses the system date and time when it records a date and
time stamp. This value is maintained in a field in the SYSDAT part of the System
Data Segment. The DATE utility sets the system time and date (refer to the Concur-
rent CPIM-86 User’s Guide for details of using DATE).

2.9 File Open Modes

The file system provides three different modes for opening files. They are defined
below.

Locked Mode

A process can open a file in Locked mode only if the file is not currently opened
by another process. Once open in Locked mode, no other process can open the file
until it is closed. Thus, if a process successfully opens a file in Locked mode, that
process owns the file until the file is closed or the process terminates. Files opened in
Locked mode support read and write operations unless the file is a Read-Only file
(attribute T1’ set) or the file is password-protected in Write mode, and the process
issuing the F_OPEN call cannot supply the password. In both of these cases, the
BDOS allows only read operations to the file.

Note: Locked mode is the Default mode for opening files under Concurrent
CP/ M-86.

@ DIGITAL RESEARCH™

2-27

2.9 File Open Modes Concurrent CP/M-86 Programmer’s Guide

Unlocked Mode

A process can open a file in Unlocked mode if the file is not currently open, or if
another process has already opened the file in Unlocked mode. This mode allows
more than one process to open the same file. Files opened in Unlocked mode support
read and write operations unless the file is a Read-Only file (attribute T1’ set) or the
file is password-protected in Write mode and the process issuing the F_OPEN call
cannot supply the password.

When opening a file in Unlocked mode, a process must reserve 35 bytes in the FCB
because the F_OPEN system call returns a 2-byte value called the File ID in the RO
and R1 bytes of the FCB. The File ID is a required parameter for the F_LOCK and
F_UNLOCK system calls. These BDOS system calls work only for files opened in
Unlocked mode.

Read-Only Mode

A process can open a file in Read-Only mode if the file is not currently opened by
another process or if another process has opened the file in Read-Only mode. This
mode allows more than one process to open the same file for Read-Only access.

The F_OPEN system call performs the following steps for files opened in Locked
or Read-Only mode. If the current user number is nonzero, and the file to be opened
does not exist under the current user number, the F_OPEN system call searches the
user zero directory for the file. If the file exists under user zero and has the system
attribute T2’ set, the BDOS opens the file under user zero. The open mode is auto-
matically forced to Read-Only when this is done.

The F_OPEN system call also performs the following action for files opened in
Locked mode when the current user number is zero. If the file exists under user zero
and has the system T2’ and Read-Only (T1’) attributes set, the open mode is auto-
matically set to Read-Only. The Read-Only attribute controls whether a user-zero
process and processes on other user numbers can concurrently open a user-zero
system file when each process opens the file in the default Locked mode. If the Read-
Only. attribute is set, all processes open the file in Read-Only mode and the BDOS
allows concurrent access of the file. However, if the Read-Only attribute is reset, the
user-zero process opens the file in Locked mode. This prevents sharing the file with
other processes.

DIGITAL RESEARCH™
2-28

Concurrent CP/M-86 Programmer’s Guide 2.9 File Open Modes

The F_OPEN and F_MAKE system calls use FCB interface attributes F5’ and Fé’
to specify the open mode. The interface attribute definitions for these functions are
listed in Table 2-7.

Note: the F_MAKE system call does not allow opening the file in Read-Only mode.

2.10 File Security

In general, the security measures implemented in the file system prevent accidental
collisions between running processes. It is not possible to provide total security under
Concurrent CP/M-86 because the file system maintains file allocation information in
open FCBs in the user’s memory region, and Concurrent CP/M-86 does not require
memory protection. However, the file system is designed to ensure that multiple
processes can share the same file system without interfering with each other by

® performing checksum verification of open FCBs.
® monitoring all open files and locked records via the system Lock List.

The BDOS validates the checksum of user FCBs before all I/O operations to pro-
tect the integrity of the file system from corrupted FCBs. The F_OPEN and F_ MAKE
system calls compute and assign checksums to FCBs. The F READRAND, F_READ,
F_WRITERAND, F_WRITEZF, F_WRITE, F_LOCK, and F_UNLOCK system calls
subsequently verify and ®ecompute the checksums when they change the FCB. The
F_CLOSE system call also verifies FCB checksums. Note that FCB verification by
these system calls can be disabled (see Section 2.12), but Concurrent CP/M-86’s file
security is reduced when this is done. If the BDOS detects an FCB checksum error, it
does not perform the requested command. Instead, it either returns to the calling
process with an error code, or if the system call is F CLOSE and the BDOS Error
mode is in the default state (see Section 2.18), it terminates the calling process with
an error message.

DIGITAL RESEARCH™

2-29

2.10 File Security Concurrent CP/M-86 Programmer’s Guide

Concurrent CP/M-86 uses a system data structure, called the Lock List, to manage
file opening and record locking by running processes. Each time a process opens a
file or locks a record successfully, the file system allocates an entry in the system
Lock List to record the fact. The file system uses the following information to

W prevent a process from deleting, truncating, renaming, or updating the attri-
butes of another process’s open file.

W prevent a process from opening a file currently opened by another process,
unless both processes open the file in unlocked or Read-Only mode.

B prevent a process from resetting a drive on which another process has an
open file.

® prevent a process from reading, writing, or locking a record currently locked
by another process. Refer to Section 2.14 for more information on record
locking and unlocking.

The file system only verifies whether another process has the FCB-specified file open
for the following file-access system calls: F_OPEN, F_MAKE, F_DELETE, F_REN-
AME, F_ATTRIB, and F_TRUNCATE. For file-access system calls that require an
open FCB, the FCB checksum controls whether the calling process can use the FCB.
By definition, a valid FCB checksum implies that the file has been successfully opened
and an entry for the file resides in the system Lock List.

The most common way a process releases a lock entry for an open file is by closing
the file. A close operation is permanent if it causes the removal of the file’s open lock
list entry. The file system invalidates the FCB checksum field on permanent close
operations to prevent continued open file operations with the FCB.

However, not all close operations are permanent. For example, if a process makes
multiple F_ OPEN or F_MAKE calls to an open file, a matching number of F_ CLOSE
calls must be made before the file system permanently closes the file. Of course, if
you only open a file once, a single close operation permanently closes the file. In
addition, a process can optionally make partial F_CLOSE calls to a file by setting
interface attribute F§°. A partial close operation does not affect the open state of a
file. In the above example, a partial close operation would not count against an
F_OPEN or F_MAKE call. A partial close operation simply updates the directory to
reflect the current state of the file.

9 DIGITAL RESEARCH™

2-30

Concurrent CP/M-86 Programmer’s Guide 2.10 File Security

As a general rule, under Concurrent CP/M-86 a process should close files as soon
as it no longer needs them, even if it has not modified them. While a process has a
file open, access by other processes to the file is restricted. For example, after a
process has opened a file in Locked mode, the file cannot be opened by other processes
until the file is closed or the process terminates.

Furthermore, space in the system Lock List is limited. If a process attempts to open
a file and no space remains in the system Lock List, or if the process exceeds the
open file limit, the BDOS denies the open request and usually terminates the calling
process. You can change the way the file system handles this error by making a
F_ERRMODE system call. Note that the size of the system Lock List and the process
open file limit are GENCCPM parameters.

There are several other situations where the file system removes open file entries
from the system Lock List for a process. For example, if a process makes a F_DE-
LETE call for a file it has open in Locked mode, the file system deletes the file and
also purges the file’s entry from the system Lock List. Deleting an open file is not
recommended under Concurrent CP/M-86 but it is supported for files opened in
Locked mode to provide compatibility with software written under earlier releases of
MP/M™ and CP/M. The file system does not allow deletion of a file opened in
Unlocked or Read-Only mode.

To ensure that the process does not use the open FCB corresponding to the deleted
file, the file system subsequently checks all open FCBs for the process. Each open
FCB is checked the next time it is used with a file-access system call that requires an
open FCB. If a Lock List entry exists for the file, the BDOS allows the operation to
proceed; if not, it indicates that the file has been purged and the file system returns
an FCB checksum error.

The file system performs this verification of a process’s open FCBs whenever it
purges an open file entry from the system Lock List. The following list describes
these situations:

® A process makes a F_ATTRIB, F_DELETE, F RENAME, or F_ TRUNCATE
system call to a file it has open in Locked mode. These operations cannot be
performed on a file open in Unlocked or Read-Only mode.

0 DIGITAL RESEARCH™

2-31

2.10 File Security Concurrent CP/M-86 Programmer’s Guide

B A process issues a DRV_FREE call for a drive on which it has an open file.

® The BDOS detects a change in media on a drive that has open files. This is a
special case because a process cannot control the occurrence of this situation,
and because it can impact more than one process. Refer to Section 2.17 for
more details on this situation,

Open FCB verification can affect performance because each verification operation
requires a directory search operation. In general, you should avoid such situations
when creating new programs for Concurrent CP/M-86.

2.11 Extended File Locking

Extended file locking enables a Concurrent CP/M-86 process to maintain a lock
on a file after the file is permanently closed. This facility allows a process to set the
attributes, delete, rename, or truncate a file without interference from other processes.
In addition, this technique avoids the problems associated with using these system
calls on open files (see Section 2.10).

A process can also reopen a file with an extended lock and continue open file
processing. To illustrate how extended file locking might be used, a process can close
an open file, rename the file, reopen the file under its new name, and continue with
file operations without ever losing the file’s Lock List item and control over the file.

A process can only specify extended file locking for a file it has opened in Locked
mode. To extend a file’s lock, set interface attribute F6’ when closing the file. The
F_CLOSE system call interrogates this attribute only when it is closing a file perma-
nently. Thus, interface attribute F5’, signifying a partial close, must be reset when
the F_CLOSE call is made. In addition, the close operation must be permanent. If a
process has opened a file N times, the F_CLOSE system call ignores the F6’ attribute
until the file is closed for the Nth time.

Note that the access rules for a file with an extended lock are identical to the rules
for a file open in Locked mode.

o DIGITAL RESEARCH™

2-32

Concurrent CP/M-86 Programmer’s Guide 2.11 Extended File Locking

To maintain an extended file lock through a F_ATTRIB, F_RENAME, or
F_TRUNCATE system call, set interface attribute F5’ of the referenced FCB when
making the call. The BDOS honors this attribute only if the file has been closed with
an extended lock. Setting attribute F5’ also maintains an extended file lock for the
F_DELETE system call, but setting this attribute also changes the nature of the delete
operation to an XFCB-only delete. If successful, all four of these system calls delete
a file’s extended lock item if they are called with attribute F5’ reset. However, the
extended lock item is not deleted if they return with an error code.

You can make a F_OPEN call to resume record operations on a file with an
extended lock. Note that you can also change the open mode when you reopen the
file. The following example illustrates the use of extended locks.

1. Open file EXLOCK.TST in Locked mode.

2. Perform read and write operations on the file EXLOCK.TST using the open
FCB.

3. Close file EXLOCK.TST with interface attribute F6’ set to retain the file’s
lock item.

4. Use the F_ RENAME system call to change the name of the file to
EXLOCK.NEW with interface attribute F5’ set to retain the file’s extended
lock item.

5. Reopen the file EXLOCK.NEW in Locked mode.

6. Perform read and write operations on the file EXLOCK.NEW, using the open
FCB.

7. Close file EXLOCK.NEW again with interface attribute F6’ set to retain the
file’s lock item.

8. Set the Read-Only attribute and release the file’s lock item by making a
F_ATTRIB system call with interface attribute F5’ reset.

At this point, the file EXLOCK.NEW becomes available for access by another
process.

DIGITAL RESEARCH™

2-33

2.12 Compatibility Attributes Concurrent CP/M-86 Programmer’s Guide

2.12 Compatibility Attributes

Compatibility attributes provide a mechanism to modify some of the Concurrent
CP/M-86 file security rules for specific command files. Concurrent CP/M-86 includes
this facility because some programs developed under earlier Digital Research operat-
ing systems do not run properly under Concurrent CP/M-86. Most of the problems
encountered by these programs occur because they were designed for single-tasking
operating systems where file security is not required. For example, a program might
close a file and then continue reading and writing to the file. Under CP/M-86, this
does not cause a problem. However, under Concurrent CP/M-86, the file system
intercepts open file operations with a deactivated FCB to ensure the integrity of the
file system. With compatibility attributes, you have a tool for dealing with these
kinds of situations.

You should only use compatibility attributes with existing programs that run prop-
erly under CP/M or CP/M-86. Do not use compatibility attributes with new pro-
grams you develop under Concurrent CP/M-86.

Compatibility attributes are defined as file attributes F1’ through F4’ of program
(CMD) files. You can use the Concurrent CP/M-86 SET utility to set these file attri-
butes from the command line. However, setting a command file’s compatibility attri-
butes has no affect unless the GENCCPM COMPATMODE option has been selected
during system generation. If this has been done, the P_CLI system call interrogates
file attributes F1’ through F4’ of the command file during program loading and
modifies the Concurrent CP/M-86 file security rules for the loaded program.

The Concurrent CP/M-86 BDOS defines the compatibility attributes as shown in
Table 2-11.

DIGITAL RESEARCH™

2-34

Concurrent CP/M-86 Programmer’s Guide 2.12 Compatibility Attributes

Table 2-11. Compatibility Attribute Definitions

Attribute Definition

F1’ Modify the rules for Locked mode.

When a process running with F1° set opens a file in Locked mode,
it can perform read and write operations to the file as normal.
However, to other processes on the system, it appears as if the
file was opened in Read-Only mode. Thus, another process run-
ning with F1’ set, can open the same file in Locked mode and
also perform write operations to the file. In addition, if a process
with F1’ reset attempts to open the file in Locked or Read-Only
mode, the open attempt is allowed but the open mode is forced
to Read-Only. Furthermore, write operations are not allowed
when the process has F1’ reset.

This compatibility mode is designed to allow multiple copies of
the same program to run concurrently, even though the program
might make read and write calls to a common file that it has
opened in Locked mode. In addition, this compatibility mode
allows other programs not in this compatibility mode to access
the file on a Read-Only basis. Note that record locking is not
supported for this modified open mode. In addition, to be safe,
make all static files such as program and help files Read-Only if
you use this compatibility attribute.

There is an alternative to using this attribute if a program only
makes read calls to the common file. By placing the file under
User 0 with the SYS and Read-Only attributes set, you force the
open mode to Read-Only when the file is opened in Locked mode.

@ DIGITAL RESEARCH™

2-35

2.12 Compatibility Attributes

Concurrent CP/M-86 Programmer’s Guide

Table 2-11. (continued)

Attribute

Definition

F2’ Change F_CLOSE to partial close.

Processes running with F2’ set, only make partial F_CLOSE
system calls. This attribute is intended for programs that close
a file to update the directory but continue to use the file. A side
effect of this attribute is that files opened by a process are not
released from the system Lock List until the process terminates.
When using this attribute, it might be necessary to set the system
Lock List parameters to higher values when you generate a sys-
tem with GENCCPM.

F3’ Ignore close checksum errors.

This attribute changes the way the F_CLOSE system call handles
Close Checksum errors. Normally, the file system prints an error
message on the console and terminates the calling process. How-
ever, if this attribute is set, the F_CLOSE system call ignores the
checksum error and performs the close operation. This interface
attribute is intended for programs that modify an open FCB
before closing a file.

F4’ Disable FCB Checksum verification for read and write operations.

Setting this attribute also sets attributes F2’ and F3’. This attri-
bute is intended for programs that modify open FCBs during
read and write operations. Use this attribute very carefully, and
only with software known to work, because it effectively disables
Concurrent CP/M-86’s file security.

DIGITAL RESEARCH™

2-36

Concurrent CP/M-86 Programmer’s Guide 2.12 Compatibility Attributes

Use the Concurrent CP/M-86 SET utility to specify the combination of compatibil-
ity attributes you want set in the program’s command file. For example,

A>SET filesrec [fl=0nl]
A>SET filespec [fl=0onsf3=0nl
A>S5ET filesrpec [fd=0onl]

If you have a program that runs under CP/M or CP/M-86 but does not run
properly under Concurrent CP/M-86, use the following guidelines to select the proper
compatibility attributes for the program.

® If the program ends with the “File Currently Opened” message when multiple
copies of the program are run, set compatibility attribute F1’, or place all
common static files under User 0 with the SYS and Read-Only attributes set.

® If the program terminates with the message “Close Checksum Error”, set
compatibility attribute F3’.

m If the program terminates with an I/O error, try running the program with
attribute F2’ set. If the problem persists, then try attribute F4’. Use attribute
F4’ only as a last resort.

2.13 Multisector I/0

The BDOS file system provides the capability to read or write multiple 128-byte
records in a single BDOS system call. This multisector facility can be visualized as a
BDOS burst mode, enabling a process to complete multiple /O operations without
interference from other running processes. In addition, the BDOS file system bypasses,
when possible, all intermediate record buffering during multisector /O operations.
Data is transferred directly between the calling process’s memory and the drive. The
BDOS also informs the XIOS when it is reading or writing multiple physical records
on a drive. The XIOS can use this information to further optimize the I/O operation
resulting in even better performance. As a result, the use of this facility in an appli-
cation program can improve its performance and also enhance overall system
throughput, particularly when performing sequential 1/O.

0 DIGITAL RESEARCH™

2-37

2.13 Multisector /O Concurrent CP/M-86 Programmer’s Guide

The number of records that can be transferred with multisector I/O ranges from 1
to 128. This value, called the BDOS Multisector Count, can be set by the F_MUL-
TISEC system call. The P_CLI system call sets the Multisector Count to one when it
initiates a transient program for execution. Note that the greatest potential perfor-
mance increases are obtained when the Multisector Count is set to 128. Of course,
this requires a 16K buffer. The Concurrent CP/M-86 PIP utility performs its sequen-
tial /O with a Multisector Count of 128.

The Multisector Count determines the number of operations to be performed by
the following BDOS system calls:

8 F READ and F_WRITE system calls
8 F READRAND, F WRITERAND, and F_WRITEZF
® F_LOCK and F_UNLOCK

If the Multisector Count is N, calling one of the above system calls is equivalent to
making N system calls. With the exception of disk /O errors encountered by the
XIOS, if an error interrupts a multisector read or write operation, the file system
returns the number of 128-byte records successfully transferred in register AH.
Section 2.14 describes how the Multisector Count affects the F_LOCK and F UNLOCK
system calls.

2.14 Concurrent File Access

Concurrent CP/M-86 supports two open modes, Read-Only and Unlocked, which
allow concurrently running processes to access common files for record operations.
The Read-Only open mode allows multiple processes to read from a common file,
but processes cannot write to a file open in this mode. Thus, files remain static when
they are opened in Read-Only mode. The Unlocked open mode is more complex
because it allows multiple processes to read and write records to a common file. As
a result, Unlocked mode has some important differences from the other open modes.

DIGITAL RESEARCH™

2-38

Concurrent CP/M-86 Programmer’s Guide 2.14 Concurrent File Access

When a process opens a file in Unlocked mode, the file system returns a 2-byte
field called the File ID in the RO and R1 bytes of the FCB. The File ID is a required
parameter of Concurrent CP/M-86’s record locking system calls, F_LOCK and
F_UNLOCK, which are only supported for files open in Unlocked mode. Note that
these system calls return a successful error code if they are called for files opened in
Locked mode. However, they perform no action in this case, because, by definition,
the calling process has the entire file locked.

The F_LOCK and F_UNLOCK system calls allow a process to establish and release
temporary ownership to particular records within a file. You must set the FCB Ran-
dom Record field and place the File ID in the first two bytes of the current DMA
buffer before making these calls. The file system locks and unlocks records in units
of 128 bytes, which is the standard Concurrent CP/M-86 record size. The number of
records locked or unlocked is controlled by the BDOS Multisector count, which can
range from 1 to 128 (see Section 2.13). In order to simplify the discussion of record
locking and unlocking, the following paragraphs assume the Multisector count is
one. However, as discussed later in this section, the more general case of multiple
record locking and unlocking is a simple extension of the single record case.

The F_LOCK system call supports two types of lock operations: exclusive locks
and shared locks. Interface attribute F5” specifies the type of lock. F5* = 0 requests
an exclusive lock; FS’ = 1 requests a shared lock. If a process locks a record with
an exclusive lock, other processes cannot read, write, or lock the record. The locking
process, however, can access the record with no restrictions. You should use this type
of lock when exclusive control over a record is required.

If a process locks a record with a shared lock, other processes cannot write to the
record or make an exclusive lock of the record. However, other processes are allowed
to read the record and make their own shared locks on the record. No process,
including the locking process, can write to a record with a shared lock. Shared locks
are useful when you want to ensure that a record does not change, but you want to
allow other processes to read the record.

g DIGITAL RESEARCH™

2-39

2.14 Concurrent File Access Concurrent CP/M-86 Programmer’s Guide

The F_LOCK system call also lets you change the lock of a record if there is no
conflict. For example, you can convert an exclusive lock into a shared lock with no
restrictions. On the other hand, a process cannot convert a record’s shared lock to
an exclusive lock if another process has a shared lock on the record.

The F_LOCK system call has another option, specified by interface attribute F6’,
which controls whether a record must exist in order to be locked. If you make a
F_LOCK system call with F6’ = 0, the file system returns an error code if the
specified record does not exist within the file. Setting F6’ to 1 requests a logical lock
operation. Logical lock operations are only limited by the maximum Concurrent
CP/M-86 file size of 32 megabytes, which corresponds to a maximum Random Rec-
ord Number of 262,143. You can use logical locks to control extending a shared file.

The F_UNLOCK system call is similar to the F_LOCK call except that it removes
locks instead of creating them. There are few restrictions on unlock operations. Of
course a process can only remove locks that it has made. The F_UNLOCK system
call has one option, controlled by interface attribute F5’. If F5’ is set to one, the
F_UNLOCK system call removes all locks for the file made by the calling process.
Otherwise, it removes the locks specified by the Random Record field and the BDOS
Multisector Count. Note that the F_CLOSE system call also removes all locks for a
file on permanent close operations.

If the BDOS Multisector Count is greater than one, the F_ LOCK and F_UNLOCK
system calls perform multiple record locking or unlocking. In general, multiple record
locking and unlocking can be viewed as a sequence of N independent operations,
where N equals the Multisector Count. However, if an an error occurs on any record
within the sequence, no locking or unlocking is performed. For example, both F_LOCK
and F_UNLOCK perform no action and return an error code if the sum of the FCB
Random Record Number and the BDOS Multisector Count is greater that 262,144,
As another example, the F_LOCK system call also returns an error code if another
process has an exclusive lock on any record within the sequence.

When a process makes a F_LOCK system call, the file system allocates a new entry
in the system Lock List to record the lock operation and associate it with the calling
process. A corresponding F_UNLOCK system call removes the locked entry from the
list. While the lock entry exists in the system Lock List, the file system enforces the
restrictions implied by the lock item.

DIGITAL RESEARCH™
2-40

Concurrent CP/M-86 Programmer’s Guide 2.14 Concurrent File Access

Because each lock item includes a record count field, a multiple lock operation
normally results in the creation of a single new entry. However, if the file system
must split an existing lock entry to satisfy the lock operation, an additional entry is
required. Similarly, an unlock operation can require the creation of a new entry if a
split is needed. Thus, in the worst case, a lock operation can require two new lock
entries and an unlock operation can require one. Note that lock item splitting can be
avoided by locking and unlocking records in consistent units.

These considerations are important because the Lock List is a limited resource
under Concurrent CP/M-86. The file system performs no action and returns an error
code if insufficient available entries exist in the system Lock List to satisfy the lock
or unlock request. In addition, the number of lock items a single process is allowed
to consume is a GENCCPM parameter. The file system also returns an error code if
this limit is exceeded.

The file system performs several special operations for read and write system calls
to a file open in Unlocked mode. These operations are required because the file
system maintains the current state of an open file in the calling process’s FCB. When
multiple processes have the same file open, FCBs for the same file exist in each
process’s memory. To ensure that all processes have current information, the file
system updates the directory immediately when an FCB for an unlocked file is changed.
In addition, the file system verifies error situations such as end-of-file, or reading
unwritten data with the directory before returning an error. As a result, read and
write operations are less efficient for files open in Unlocked mode when compared to
equivalent operations for files opened in Locked mode.

2.15 File Byte Counts

Although the logical record size of Concurrent CP/M-86 is restricted to 128 bytes,
the file system does provide a mechanism to store and retrieve a byte count for a file.
This facility can identify the last byte of the last record of a file. The BDOS Compute
File Size function returns the last Random Record Number, + 1, of the last record
of a file.

0 DIGITAL RESEARCH™

2-41

2.15 File Byte Counts Concurrent CP/M-86 Programmer’s Guide

The F_ATTRIB system call can set a file’s byte count. This is an option controlled
by interface attribute F6’. Conversely, the F_OPEN system call can return a file’s
byte count to the CR field of the FCB. The F_SFIRST and F_SNEXT system calls
also return a file’s byte count. These system calls return the byte count in the CS field
of the FCB returned in the current DMA buffer.

Note that the file system does not access or update the byte count value in BDOS
read or write system calls. However, the F_MAKE system call does set the byte count
value to zero when it creates a file in the directory.

2.16 Record Blocking and Deblocking

Under Concurrent CP/M-86, the logical record size for disk 1/0O is 128 bytes. This
is the basic unit of data transfer between the operating system and running processes.
However, on disk, the record size is not restricted to 128 bytes. These records, called
physical records, can range from 128 bytes to 4K bytes in size. Record blocking and
deblocking is required on systems that support drives with physical record sizes
larger than 128 bytes.

The process of building up physical records from 128-byte logical records is called
record blocking. This process is required in write operations. The reverse process of
breaking up physical records into their component 128-byte logical records is called
record deblocking. This process is required in read operations. Under Concurrent
CP/M-86, record blocking and deblocking is normally performed by the BDOS.

Record deblocking implies a read-ahead operation. For example, if a process reads
a logical record that resides at the beginning of a physical record, the entire physical
record is read into an internal buffer. Subsequent BDOS read calls for the remaining
logical records access the buffer instead of the disk. Conversely, record blocking
results in the postponement of physical write operations but only for data write
operations. For example, if a transient program makes a BDOS write call, the logical
record is placed in a buffer equal in size to the physical record size. The write
operation on the physical record buffer is postponed until the buffer is needed in
another /O operation. Note that under Concurrent CP/M-86, directory write opera-
tions are never postponed.

DIGITAL RESEARCH™

2-42

Concurrent CP/M-86 Programmer’s Guide 2.16 Record Blocking and Deblocking

Postponing physical record write operations has implications for some application
programs. For programs that involve file updating, it is often critical to guarantee
that the state of the file on disk parallels the state of the file in memory after an
update operation. This is only an issue on drives where physical write operations are
postponed because of record blocking and deblocking. If the system should crash
while a physical buffer is pending, data would be lost. To prevent this loss of data,
the F_FLUSH system call can be called to force the write of any pending physical
buffers associated with the calling process.

Note: the file system discards all pending physical data buffers when a process
terminates. However, the file system automatically makes a F_FLUSH call in the
F_CLOSE system call. Thus, it is sufficient to make a F_CLOSE system call to ensure
that all pending physical buffers for that file are written to the disk.

2.17 Reset, Access, and Free Drive

The BDOS system calls DRV_ALLRESET, DRV_RESET, DRV_ACCESS, and
DRV_FREE allow a process to control when to reinitialize a drive directory for file
operations. This process of initializing a drive’s directory is called logging-in the
drive.

When you start Concurrent CP/M-86, all drives are initialized to the reset state.
Subsequently, as processes reference drives, the file system automatically logs them
in. Once logged-in, a drive remains in the logged-in state until it is reset by the
DRV_ALLRESET or DRV_RESET system calls or a media change is detected on the
drive. If the drive is reset, the file system automatically logs in the drive again the
next time a process references it. The file system logs in a drive immediately when it
detects a media change on the drive.

Note that the DRV_ALLRESET and DRV_RESET system calls have similar effects

except that the DRV_ALLRESET system call affects all drives on the system. You
can specify the combination of drives to reset with the DRV_RESET system call.

00 DIGITAL RESEARCH™

2-43

2.17 Reset, Access, and Free Drive Concurrent CP/M-86 Programmer’s Guide

Logging-in a drive consists of several steps. The most important step is the initiali-
zation of the drive’s allocation vector. The allocation vector records the allocation
and deallocation of data blocks to files, as files are created, extended, deleted and
truncated. Another function performed during drive log-in is the initialization of the
directory checksum vector. The file system uses the checksum vector to detect media
changes on a drive. Note that permanent drives, which do not support media changes,
might not have checksum vectors.

Under Concurrent CP/M-86, the DRV_RESET operation is conditional. The file
system cannot reset a drive for a process if another process has an open file on the
drive. However, the exact action taken by a DRV_RESET operation depends on
whether the drive to be reset is permanent or removable.

Concurrent CP/M-86 determines whether a drive is permanent or removable by
interrogating a bit in the drive’s Disk Parameter Block (DPB) in the XIOS. A high-
order bit of 1 in the DPB Checksum Vector Size field designates the drive as perma-
nent. A drive’s Removable or Nonremovable designation is critical to the reset oper-
ation described below.

The BDOS first determines whether there are any files currently open on the drive
to be reset. If there are none, the reset takes place. If there are open files, the action
taken by the reset operation depends on whether the drive is removable and whether
the drive is Read-Only or Read-Write. Note that only the DRV_SETRO system call
can set a drive to Read-Only. Following log-in, a drive is always Read-Write.

If the drive is a permanent drive and if the drive is not Read-Only, the reset
operation is not performed, but a successful result is returned to the calling process.

However, if the drive, is removable or set to Read-Only, the file system determines
whether other processes have open files on the drive. If they do, then it denies
DRV_RESET operation and returns an error code to the calling process.

If all the open files on a removable drive belong to the calling process, the process
is said to own the drive. In this case, the file system performs a qualified reset on the
drive and returns a successful result. This means that the next time a process accesses
this drive, the BDOS performs the log-in operation only if it detects a media change
on the drive. The logic flow of the drive reset operation is shown in Figure 2-6.

DIGITAL RESEARCH™

2-44

Concurrent CP/M-86 Programmer’s Guide 2.17 Reset, Access, and Free Drive

YES
OPEN FILES
ON DRIVE?
NO
DRIVE YES
REMOVABLE?
t no
YES
DRIVE R/O?
NO
v
RESET DO NOT RESET OPEN FILES YES
DRIVE DRIVE BELONG TO
ANOTHER
PROCESS?
¥ nO
QUALIFIED
RESET
PERFORMED
v
DISK DISK
RESET - RESET
SUCCESS DENIED
Figure 2-6. Disk System Reset
i DIGITAL RESEARCH ™

2-45

2.17 Reset, Access, and Free Drive Concurrent CP/M-86 Programmer’s Guide

If the BDOS detects a media change on a drive after a qualified reset, it purges all
open files on the drive from the system Lock List and subsequently verifies all open
FCBs in file operations for the owning process (refer to Section 2.10 for details of
FCB verification).

In all other cases where the BDOS detects a media change on a drive, the file
system purges all open files on the drive from the system Lock List, and flags all
processes owning a purged file for automatic open FCB verification.

Note: if a process references a purged file with a BDOS command that requires an
open FCB, the file system returns to the process with an FCB checksum error.

The primary purpose of the drive reset functions is to prepare for a media change
on a drive. Because a drive reset operation is conditional, it allows a process to test
whether it is safe to change disks. Thus, a process should make a successful drive
reset call before prompting the user to change disks. In addition, you should close all
your open files on the drive, particularly files you have written to, before prompting
the user to change disks. Otherwise, you might lose data.

The DRV_ACCESS and DRV_FREE system calls perform special actions under
Concurrent CP/M-86. The DRV_ACCESS system call inserts a dummy open file item
into the system Lock List for each specified drive. While that item exists in the system
Lock List, no other process can reset the drive. The DRV_FREE system call purges
the Lock List of all items, including open file items, belonging to the calling process
on the specified drives. Any subsequent reference to those files by a BDOS system
call requiring an open FCB results in a FCB checksum error return.

The DRV_FREE system call has two important side effects. First of all, any pend-
ing blocking/deblocking buffers on a specified drive that belong to the calling process
are discarded. Secondly, any data blocks that have been allocated to files that have
not been closed are lost. Be sure to close your files before making this system call.

01 DIGITAL RESEARCH™
2-46

Concurrent CP/M-86 Programmer’s Guide 2.17 Reset, Access, and Free Drive

The DRV_SETRO system call is also conditional under Concurrent CP/M-86. The
file system does not allow a process to set a drive to Read-Only if another process
has an open file on the drive. This applies to both removable and permanent drives.

A process can prevent other processes from resetting a Read-Only drive by opening
a file on the drive or by issuing a DRV_ACCESS call for the drive and then making
a DRV_SETRO system call. Executing DRV_SETRO before the F_OPEN or
DRV_ACCESS call leaves a window in which another process could set the drive
back to Read-Write. While the open file or dummy item belonging to the process
resides in the system Lock List, no other process can reset the drive to take it out of
Read-Only status.

2.18 BDOS Error Handling

The Concurrent CP/M-86 file system has an extensive error handling capability.
When an error is detected, the BDOS responds in one of three ways:

1. It can return to the calling process with return codes in the AX register
identifying the error.

2. It can display an error message on the console and terminate the process.

3. It can display an error message on the console and return an error code to
the calling process, as in method 1.

The file system handles the majority of errors it detects by method 1. Two examples
of this kind of error are the “file not found” error for the F_OPEN system call and
the “reading unwritten data” error for the F_READ call. More serious errors, such
as disk /O errors, are normally handled by method 2. Errors in this category, called
physical and extended errors, can also be reported by methods 1 and 3 under pro-
gram control.

47 DIGITAL RESEARCH™

2-47

2.18 BDOS Error Handling Concurrent CP/M-86 Programmer’s Guide

The BDOS Error mode, which has three states, determines how the file system
handles physical and extended errors. In the default state, the BDOS displays the
error message and terminates the calling process (method 2). In Return Error mode,
the BDOS returns control to the calling process with the error identified in the AX
register (method 1). In Return and Display Error mode, the BDOS returns control to
the calling process with the error identified in the AX register and also displays the
error message at the console (method 3).

While both return modes protect a process from termination because of a physical
or extended error, the Return and Display mode also allows the calling process to
take advantage of the built-in error reporting of the file system. Physical and extended
errors are displayed on the console in the following format:

CP/M Error on d: error message
BDOS Function = nn File = filename.typ

where d is the name of the drive selected when the error condition occurs; error
message identifies the error; nn is the BDOS function number, and filename.typ
identifies the file specified by the BDOS function. If the BDOS function did not
involve an FCB, the file information is omitted.

The following tables detail BDOS physical and extended error messages.

02 DIGITAL RESEARCH™

2-48

Concurrent CP/M-86 Programmer’s Guide 2.18 BDOS Error Handling

Table 2-12. BDOS Physical Errors

Message

Meaning

Disk I/O

The “Disk I/O” error results from an error condition returned
to the BDOS from the XIOS module. The file system makes XIOS
read and write calls to execute BDOS file-access system calls. If
the XIOS read or write routine detects an error, it returns an
error code to the BDOS, causing this error message.

Invalid Drive

The “Invalid Drive” error also results from an error condition
returned to the BDOS from the XIOS module. The BDOS makes
an XIOS Select Disk call before accessing a drive to perform a
requested BDOS function. If the XIOS does not support the
selected disk, it returns an error code resulting in this error.

Read/Only File

The BDOS returns the “Read/Only File” error message when a
process attempts to write to a file with the R/O attribute set.

Read/Only Disk

The BDOS returns the “Read/Only Disk error’” message when
a process makes a write operation to a disk that is in Read-Only
status. A drive can be placed in Read-Only status explicitly with
the DRV_SETRO system call.

% DIGITAL RESEARCH™

2-49

2.18 BDOS Error Handling Concurrent CP/M-86 Programmer’s Guide

Table 2-13. BDOS Extended Errors

Message

Meaning

File Opened in Read/Only Mode

The BDOS returns the “File Opened in Read/Only Mode” error
message when a process attempts to write to a file opened in
Read-Only mode. A process can open a file in Read-Only mode
explicitly by setting FCB interface attribute F6’. In addition, if
a process opens a file in Locked mode, the file system automat-
ically forces the open mode to Read-Only mode when:

B the current user number is zero and the process opens a file
with the Read-Only and SYS attributes set.

B the current user number is not zero and the process opens a
user zero file with the SYS attribute set.

The BDOS also returns this error if a process attempts to write
to a file that is password-protected in Write mode, and it did
not supply the correct password when it opened the file.

File Currently Open

The BDOS returns the “File Currently Open” error message
when a process attempts to delete, rename, or modify the attri-
butes of a file opened by another process. The BDOS also returns
this error when a process attempts to open a file in a mode
incompatible with the mode in which the file was previously
opened by another process or by the calling process.

Close Checksum Error

The BDOS returns the “Close Checksum Error” message when
the BDOS detects a checksum error in the FCB passed to the file
system with a F_CLOSE call.

Password Error

The BDOS returns the “Password Error” message when pass-
words are required and the file password is not supplied or is
incorrect.

iy DIGITAL RESEARCH™

2-50

Concurrent CP/M-86 Programmer’s Guide 2.18 BDOS Error Handling

Table 2-13. (continued)

Message Meaning
File Already Exists

The BDOS returns the “File Already Exists” error message for
the F_MAKE and F_RENAME system calls when the BDOS
detects a conflict on filename and filetype.

Illegal ? in FCB

The BDOS returns the “Illegal ? in FCB” error message when
the BDOS detects a ? character in the filename or filetype of the
passed FCB for the F_ATTRIB, F OPEN, F RENAME,
F_TIMEDATE, F_WRITEXFCB, F_TRUNCATE, and F_MAKE

system calls.

Open File Limit Exceeded

The BDOS returns the “Open File Limit Exceeded” error message
when a process exceeds the process file lock limit specified by

GENCCPM. The F_OPEN, F_MAKE, and DRV_ACCESS sys-
tem calls can return this error.

No Room in System Lock List

The BDOS returns the “No Room in System Lock List” error
message when no room for new entries exists within the system
Lock List. The F_OPEN, F_MAKE, and DRV_ACCESS system

calls can return this error.

The following paragraphs describe the error return code conventions of the file
system calls. Most file system calls fall into three categories in regard to return codes;
they return an error code, a directory code, or an error flag. The error conventions
let programs written for CP/M-86 run without modification.

19 DIGITAL RESEARCH™

2-51

2.18 BDOS Error Handling Concurrent CP/M-86 Programmer’s Guide

The following BDOS system calls return a logical error in register AL:

F_LOCK
F_READ
F_READRAND
F_UNLOCK
F_WRITE
F_WRITERAND
F_WRITEZF

Table 2-14 lists error code definitions for register AL.

Table 2-14. BDOS Error Codes

Code .Definition
OOH: Function successful
01H: Reading unwritten data
: No available directory space (Write Sequential)
02H: No available data block
03H: Cannot close current extent
04H: Seek to unwritten extent
0SH: No available directory space
06H: Random record number out of range
* 08H: Record locked by another process
(restricted to files opened in Unlocked mode)
09H: Invalid FCB (previous BDOS F_CLOSE system call returned an
error code and invalidated the FCB)
0AH: FCB checksum error
* OBH: Unlocked file unallocated block verify error
** QCH: Process record lock limit exceeded
** O0DH: Invalid File ID
** QEH: No room in System Lock List
OFFH: Physical error : refer to register AH

- returned only for files opened in Unlocked Mode
- returned only by the F_LOCK and F_UNLOCK system calls for files opened
in Unlocked mode

i DIGITAL RESEARCH™

2-52

Concurrent CP/M-86 Programmer’s Guide 2.18 BDOS Error Handling

For BDOS read and write system calls, the file system also sets register AH when the
returned error code is a value other than zero or OFFH. In this case, register AH
contains the number of 128-byte records successfully read or written before the error
was encountered. Note that register AH can only contain a nonzero value if the
calling process has set the BDOS Multisector Count to a value other than one;
otherwise register AH is always set to zero. On successful system calls
(Error Code = 0), register AH is also set to zero. If the Error Code OFFH, register
AH contains a physical error code (see Table 2-15).

The following BDOS system calls return a directory code in register AL:

DRV_SETLABEL
F_ATTRIB
F_CLOSE
F_DELETE
F_MAKE
F_OPEN
F_RENAME
F_SIZE
F_SFIRST
F_SNEXT
F_TIMEDATE
F_TRUNCATE
F_WRITEXFCB

The directory code definitions for register AL follow.

00H - 03H : successful function
OFFH : unsuccessful function

03 DIGITAL RESEARCH™

2-53

2.18 BDOS Error Handling Concurrent CP/M-86 Programmer’s Guide

With the exception of the F_SFIRST and F_SNEXT system calls, all functions in
this category return with the directory code set to zero upon a successful return.
However, for these two system calls, a successful directory code identifies the relative
starting position of the directory entry in the calling process’s current DMA buffer.

If a process uses the F_ERRMODE system call to place the BDOS in Return Error
mode, the following system calls return an error flag in register AL on physical
errors:

DRV_GETLABEL
DRV_ACCESS
DRV_SET
DRV_SPACE
DRV_FLUSH

The error flag definition for register AL follows.

00H : successful function
OFFH : physical error : refer to register AH

The BDOS returns nonzero values in register AH to identify a physical or extended
error if the BDOS Error mode is in one of the return modes. Except for system calls
that return a Directory Code, register AL equal to OFFH indicates that register AH
identifies the physical or extended error. For functions that return a Directory Code,
if register AL equals 255, and register AH is not equal to zero, register AH identifies
the physical or extended error. Table 2-15 shows the physical and extended error
codes returned in register AH.

w7 DIGITAL RESEARCH™
2-54

Concurrent CP/M-86 Programmer’s Guide

2.18 BDOS Error Handling

Table 2-15. BDOS Physical and Extended Errors

Code Explanation

01H Disk I/O Error : permanent error

02H Read/Only Disk

03H Read/Only File, File Opened in Read/Only Mode, or File Password
Protected in Write Mode and Correct Password Not Specified

04H Invalid Drive : drive select error

0SH File Currently Open in an incompatible mode

06H Close Checksum Error

07H Password Error

08H File Already Exists

09H Illegal ? in FCB

0AH Open File Limit Exceeded

OBH No Room in System Lock List

The following two system calls represent a special case because they return an
address in register AX.

DRV_ALLOCVEC
DRV_DBP

When the calling process is in one of the BDOS return error modes and the BDOS
detects a physical error for these system calls, it returns to the calling process with
registers AX and BX set to OFFFFH. Otherwise, they return no error code.

Under Concurrent CP/M-86, the following system calls also represent a special

case.

DRV_ALLRESET
DRV_RESET
DRV_SETRO

iy DIGITAL RESEARCH™

2-55

2.18 BDOS Error Handling Concurrent CP/M-86 Programmer’s Guide

These system calls return to the calling process with registers AL and BL set to OFFH
if another process has an open file or has made a DRV_ACCESS call that prevents
the reset or write protect operation. If the calling process is not in Return Error
mode, these system calls also display an error message identifying the process that
prevented the requested operation.

End of Section 2

DIGITAL RESEARCH™
2-56

Section 3
Transient Commands

3.1 Transient Process Load and Exit

A transient process is a file of type CMD that is loaded from disk and resides in
memory only during its operation. A resident system process is a file of type RSP
that is included in Concurrent CP/M-86 during GENCCPM. Section 4 describes the
three system memory models that determine the initial values of segment registers in
transient processes.

You can initiate a transient process by entering a command at a system console.
The console’s TMP (Terminal Message Processor) then calls the Command Line
Interpreter system call (refer to the P_CLI system call), and passes to it the command
line entered by the user. If the command is not an RSP, then the P_CLI system call
locates and then loads the proper CMD file. The P_CLI system call calls the F_PARSE
system call that parses up to two filenames following the command, and places the
properly formatted FCBs at locations 00SCH and 006CH in the Base Page of the
initial Data Segment.

The P_CLI system call initializes memory, the Process Descriptor, and the User
Data Area (UDA), and allocates a 96-byte stack area, independent of the program,
to contain the process’s initial stack. Concurrent CP/M-86 divides the DMA address
into the DMA segment address and the DMA offset. The P_CLI system call initializes
the default DMA segment to the value of the initial data segment, and the default
DMA offset to 0080H.

The P_CLI system call creates the new process with a P_CREATE system call and

sets the initial stack so that the process can execute a Far Return instruction to
terminate. A process also ends when it calls DRV_ALLRESET or P_ TERM.

12 DIGITAL RESEARCH™

3-1

W
o
o
2.
=
=
)

3.1 Transient Process Load and Exit Concurrent CP/M-86 Programmer’s Guide

You can also terminate a process by typing a single CTRL-C during console input.
See C_MODE for details of enabling/disabling CTRL-C. CTRL-C also forces a
DRV_RESET call for each logged-in drive. This DRV_RESET operation only affects
removable media drives.

3.2 Command File Format

A CMD file consists of a 128-byte header record followed immediately by the
memory image. The command file header record is composed of 8 group descriptors
(GDs), each 9 bytes long. Each group descriptor describes a portion of the program
to be loaded. The format of the header record is shown in Figure 3-1.

[eor [oor [oon [ove [oo [oo [oo [oos | |

128 BYTES

Figure 3-1. CMD File Header Format

In Figure 3-1, GD 1 through GD 8 represent group descriptors. Each group descriptor
corresponds to an independently loaded program unit and has the format shown in
Figure 3-2.

32 ¥ DIGITAL RESEARCH™

Concurrent CP/M-86 Programmer’s Guide 3.2 Command File Format

00H 01H 03H 05H Q7H 08H

G-TYPE G-LENGTH A-BASE G-MIN G-MAX

Figure 3-2. Group Descriptor Format

G_Type determines the group descriptor type. The valid group descriptors have a
G_Type in the range 1 through 8, as shown in Table 3-1. All other values are
reserved for future use. For a given CMD file header only a Code Group and one of
any other type can be included.

If a program uses either the Small or Compact Model, the code group is typically
pure; that is, it is not modified during program execution.

Table 3-1. Grodp Descriptors

G_Type Group Type
01H Code Group
02H Data Group
03H Extra Group
04H Stack Group
05SH Auxiliary Group #1
06H Auxiliary Group #2
07H Auxiliary Group #3
08H Auxiliary Group #4

All remaining values in the group descriptor are given in increments of 16-byte
paragraph units with an assumed low-order 0 nibble to complete the 20-bit address.

w DIGITAL RESEARCH™

3-3

3.2 Command File Format Concurrent CP/M-86 Programmer’s Guide

Table 3-2. Group Descriptor Fields

Field Description

G_Length gives the number of paragraphs in the group. Given a
G_length of 080H, for example, the size of the group is
0800H (2048 decimal) bytes.

A Base defines the base paragraph address for a nonrelocatable
group.
G_Min/G_Max define the minimum and maximum size of the memory

area to allocate to the group.

The memory model described by a header record is implicitly determined by the
group descriptors (refer to Section 4.1). The 8080 Model is assumed when only a
code group is present, because no independent data group is named. The Small
Model is assumed when both a code and data group are present but no additional
group descriptors occur. Otherwise, the Compact Model is assumed when the CMD
file is loaded.

3.3 Base Page Initialization

The Concurrent CP/M-86 Base Page contains default values and locations initial-
ized by the P_CLI and P_LOAD system calls and used by the transient process.

The Base Page occupies the regions from offset 0000H through 00FFH relative to
the initial data segment, and contains the values shown in Figure 3-3.

DIGITAL RESEARCH™

3-4

Concurrent CP/M-86 Programmer’s Guide

3.3 Base Page Initialization

L M H L H
0 1 2 3 4 5 6

+ + + + +

0 CODE LENGTH CODE BASE M80
+ + r +

6 DATA LENGTH DATA BASE RESERVED
+ + T + +

C EXTRA LENGTH EXTRA BASE RESERVED
+ + + + 1

12 STACK LENGTH STACK BASE RESERVED
+ + + 1 T

18 AUX 1 AUX1 RESERVED
+ + - + T

1E AUX 2 AUX 2 RESERVED
+ + T + T

24 AUX 3 AUX 3 RESERVED
+ + + + +

2A AUX 4 AUX 4 RESERVED
+ + r + T

30 BYTES 03HO THROUGH 04FH ARE NOT CURRENTLY USED AND

ARE RESERVED FOR FUTURE USE BY DIGITAL RESEARCH

+ +
50 DRIVE PASSWORD 1 ADDR I P1LEN I PASSWORD 2 ADDR
+ +
56 P2 LEN RESERVED FOR FUTURE USE
+ + + +
5C DEFAULT FILE NAME1
+ + + + +
6C
DEFAULT FILE NAME2
+ + +
7C CR RANDOM RECORD NUMBER (OPT)
+ + +
80 DEFAULT 128-BYTE DMA BUFFER

Figure 3-3.

1 DIGITAL RESEARCH™

Concurrent CP/M-86 Base Page Values

3-5

3.3 Base Page Initialization Concurrent CP/M-86 Programmer’s Guide

The fields in the Base Page are defined as follows:

® The M80 byte is a flag indicating whether the 8080 Memory Model was used

during load. The values of the flag are defined as:

1 = 8080 Model
0 = not 8080 Model

If the 8080 Model is used, the code length never exceeds OFFFFH.

The bytes marked Aux 1 through Aux 4 correspond to a set of four optional
independent groups that might be required for programs that execute using
the Compact Memory Model. The initial values for these descriptors are derived
from the header record in the memory image file.

® Length is stored using the Intel convention: low, middle, and high bytes.
® Base refers to the paragraph address of the beginning of the segment.

® The drive byte identifies the drive from which the transient program was read.

0 designates the default drive, while a value of 1 through 16 identifies drives
A through P.

Password 1 Addr (bytes 0051H-0052H) contains the address of the password
field of the first command tail operand in the default DMA buffer at 0080H.
The P_CLI system call sets this field to 0 if no password is specified.

P1 Len (byte 0053H) contains the length of the password field for the first
command tail operand. The P_CLI system call sets this to 0 if no password is
specified.

Password 2 Addr (bytes 0054H-0055H) contains the address of the password

field of the second command tail operand in the default DMA buffer at 0080H.
The P_CLI system call sets this field to 0 if no password is specified.

P2 Len (byte 0056H) contains the length of the password field for the second
command tail operand. The P_CLI system call sets this field to 0 if no pass-
word is specified.

File Namel (bytes 005CH-0067H) is initialized by the P_CLI system call for
a transient program from the first command tail operand of the command
line.

18 DIGITAL RESEARCH™

3-6

Concurrent CP/M-86 Programmer’s Guide 3.3 Base Page Initialization

® File Name2 (bytes 006CH-0077H) is initialized by the P_CLI system call for
a transient program from the second command tail operand of the command
line.

Note: File Namel can be used as part of a File Control Block (FCB) begin-
ning at 0SCH. To preserve File Name2, copy it to another location before
using the FCB in file I/O system calls.

@ The CR field (byte 007CH) contains the current record position used in
sequential file operations with the FCB at 05CH.

® The optional Random Record Number (bytes 007DH-007FH) is an extension
of the FCB at 05CH, used in random record processing.

B The Default DMA buffer (bytes 0080H-O0FFH) contains the command tail
when the P_CLI system call loads a transient program.

3.4 Parent/Child Relationships

Under Concurrent CP/M-86, when one process creates another process, there is a
parent/child relationship between them. The child process inherits most of the default
values of the parent process. This includes the default disk, user number, console, list
device, and password. The child process also inherits interrupt vectors 0, 1, 3, 4,
224, and 225, which the parent process initialized.

End of Section 3

® DIGITAL RESEARCH™

3-7

Section 4
Command File Generation

4.1 Transient Execution Models

When the program is loaded, the initial values of the segment registers, the instruc-
tion pointer, and the stack pointer are determined by the specific type of memory
model used by the transient process, indicated in the CMD file header record.

There are three memory models, the 8080 model, the Small Model, and the Com-
pact Model, summarized in Table 4-1.

Table 4-1. Concurrent CP/M-86 Memory Models

Model Group Relationships
8080 Model Code and Data Groups Overlap
Small Model Independent Code and Data Groups
Compact Model Three or More Independent Groups

® DIGITAL RESEARCH™

4-1

4.1 Transient Execution Models Concurrent CP/M-86 Programmer’s Guide

The 8080 Model supports programs that are directly translated from an 8080
environment where code and data are intermixed. The 8080 Model consists of one
group that contains all the code, data, and stack areas. Segment registers are initial-
ized to the starting address of the region containing this group. The segment registers
can, however, be managed by the application program during execution so that
multiple segments in the code group can be addressed.

The Small Model is similar to that defined by Intel, where the program consists of
an independent code group and a data group. The code and data groups often consist
of, but are not restricted to, single 64K byte segments.

The Compact Model occurs when any of the extra, stack, or auxiliary groups are
present in program. Each group can consist of one or more segments, but if any
group exceeds one segment in size, or if auxiliary groups are present, then the appli-
cation program must manage its own segment registers during execution in order to
address all code and data areas.

These three models differ primarily in how the operating system initializes the
segment registers when it loads a transient process. The P_LOAD system call deter-
mines the memory model used by a transient program by examining the program
group usage, as described in the following sections.

4.1.1 The 8080 Memory Model

The 8080 Model is assumed when the transient program contains only a code group. In
this case, the Command Line Interpreter (P_CLI) system call initializes the CS, DS, and
ES registers to the beginning of the code group and sets the SS and SP registers to a 96-
byte initial stack area that it allocates.

0 DIGITAL RESEARCH™

4-2

